Human Obesity Therapeutics, Modern Diagnosis and Biomarkers

Da-Yong Lu1*, Jin-Yu Che1, Ying Shen2 and Bin Xu3

1Shanghai University, Shanghai, China
2Medical School, Shanghai Jiao-Tong University, China
3Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China

*Corresponding Author: Da-Yong Lu, Shanghai University, Shanghai, China.

Received: July 23, 2019; Published: August 26, 2019

Abstract

Obesity is a prevalence metabolic phenotype caused by abnormal metabolic homeostasis and gene-environmental interactions. A small proportion of obesity persons are ineffective by lifestyle and current therapeutics. Genetic and molecular basis of disease diagnosis is required to improve targeted therapy against genetic/molecular abnormality in humans.

Keywords: Obesity; Endocrinology; Human Genome; Inflammatory Factors; Neural Disorder; Mental Disorder; Obese Treatment; Metabolic Disease

Backgrounds

Obesity is a prevalence metabolic and physiological disorder (30 - 35% in common adult worldwide) caused by a sequence of host-environmental interactions [1-6]. Many types of preventive and therapeutic options have been widely sought after. However, most of these medications (life-style-food limitation or high-load of human exercise)-energy imbalance and glucose homeostasis disorder strategies are not always work [7], a number of genetic/molecular exploration should be emphasized in the future.

New therapeutic convention

Different types of counteractive measures are suitable for different individuals. Apart from life-style and energy limitation, cellular and molecular etiologic/pathological mechanism study may be other ways for obese therapeutics in patients resistance to energy control. Following pathways may be new initiatives for obese therapeutics:

• Pathologic factorials (endocrinological factors)-leptin, thyroxine, insulin and many other hormonal dysfunction
• Brain-visual-appetite axis (hypothalamic)
• Psychiatric burden and disorder
• Drug-induced (hormonal drugs, antibiotics or other drugs associated with human liver dysfunction)
• Inflammatory factors (TNF secretion)
• Tumor-induced (pituitary tumors and others)
• Physiological change (adipose cells or tissues)
• Genetic alleles and loci (loss-of-function or copy number changes of key genes and molecules) [8-21].

Citation: Da-Yong Lu, et al. "Human Obesity Therapeutics, Modern Diagnosis and Biomarkers". EC Pharmacology and Toxicology 7.9 (2019): 997-1000.
Future Directions

To achieve targeted therapeutics for genetic/molecular abnormality, individual therapies and new drug development may be important [22]. Combinations (drugs plus life-style) are widely recommended for obese patients, which are very useful for many other chronic diseases, such as HIV/AIDS and neoplasm metastasis [23-28]. Nonetheless, these therapeutic systems are usually based on doctor’s experience rather than scientific-supportive formats. Therapeutic paradigms for genetic/molecular abnormality needs modern diagnosis [29-37] and personalized medicine [38-41]. To achieve better obesity treatments, new drug development is also very useful [42-45].

Conclusion

Human obesity is a strong risk factor for human morbidity and mortality. Modern genetic/molecular diagnosis in the clinic is indispensable. After these genetic/molecular study, all obese people can be fully controlled.

Conflict of Interests

None.

Bibliography

Citation: Da-Yong Lu, et al. "Human Obesity Therapeutics, Modern Diagnosis and Biomarkers". EC Pharmacology and Toxicology 7.9 (2019): 997-1000.

Citation: Da-Yong Lu, et al. “Human Obesity Therapeutics, Modern Diagnosis and Biomarkers”. *EC Pharmacology and Toxicology* 7.9 (2019): 997-1000.