Translational and Molecular Cytoarchitectural Genetic Guided Therapy to Induce Dopamine Homeostatic Neuro-signaling in Reward Deficiency and Associated Drug and Behavioral Addiction Seeking: A 60 Year Sojourn the Future is Now

Kenneth Blum1* and Rajendra D Badgaiyan2,3

1Graduate College, Western University Health Sciences, Pomona, CA, USA
2Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital and Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
3Department of Psychiatry, M.T. Sinai School of Medicine, New York, NY, USA

*Corresponding Author: Kenneth Blum, Graduate College, Western University Health Sciences, Pomona, CA, USA.

Received: July 26, 2021; Published: July 29, 2021

All addictions both drug and behavioral are considered debilitating disorders for the individual and very costly for society in the trillion dollar range globally [1]. Generally, it is accepted that while positive reinforcement may be a deterrent even in the face of polymorphic DNA reward genes, epigenetic negative reinforcement can be a trigger in the early stages of seeking behavior by self-medicating people [2]. It is well-known that while acute use of both substance and non-substance aberrant behavioral seeking increases the release of neuronal dopamine (DA) in the shell of the Nucleus Accumbens (NAc) [3], chronic abuse significantly reduces DA release thereby inducing changes in neural circuits that control motivational processes, including arousal, reward, cognition and stress [4].

The search for translational, solutions began in Blum’s’ laboratory in the late 60’s related to dopamine and peripheral tremors in cats having importance to Parkinsonism [5]. Number of follow-up studies initially provided the first evidence for the anti-ethanol effects of narcotic antagonist paving the way for Naltrexone as a treatment for reward deficiency [6,7]. Additional work related to animal genetics that revealed the important role of endorphins, especially methionine- enkephalin in alcohol intake in genetically bred rodents [8]. As a result of this work, Blum, et al. [9] showed that chronic alcohol intake in Golden Syrian Hamsters had profound synthesis inhibition of endogenous Leu-enkephalin, in the basal ganglion.

During the mid-80s, it was discovered that utilizing substances that inhibit the enzyme carboxypeptidase, like D-Phenylalanine, raised brain endorphins and significantly reduced ethanol intake in high alcohol [10].

Gold and Blum’s early work led to the classic concept of DA depletion in psychostimulant abuse (i.e. cocaine) and DA and norepinephrine’s (NE) role in alcohol/ opiates withdrawal [11,12]. The wide-spread use of Clonidine or other alpha-agonists was first proposed by Gold’s group [13] leading to concept of the dopamine depletion hypothesis [14].

In the 1990’s Blum and Noble discovered the first genetic association of the DRD2 A1 allele and others severe alcoholism/reward deficit [15]. Recent support from Gelernter’s Yale group revealed that GWAS on 2.5 million Veterans with major depression carried polymorphic alleles of the DRD2 gene as a top candidate [16]. In 1995, Blum coined the term “Reward Deficiency Syndrome (RDS)” [17] now featured in Sage Encyclopedia as a clinical psychological disorder. Twenty-five years later; came the development of the patented USA and European Genetic Addiction Risk Severity (GARS®) test [18]. The test consists of ten reward genes and eleven risk alleles that reflect a hypodopaminergia across the brain reward circuitry. Coupling the GARS test with matched allelic Pro-dopamine Regulation (KB220) in a number of both animal and human abstinent heroin and psychostimulant misusers, has been shown to induce “Dopamine Homeostasis” [19-21].

Moreover, in a large Alcohol-Use Disorder (AUD) meta-analysis representing approximately 110,000 cases and 120,000 controls utilizing the various risk alleles measured in GARS, we found significant Odds Ratios (ORs) for 8 of the 10 Genes and associated alleles in
favor of cases (DRD1-4, DAT1, COMT, OPMR, 5-HTTLPR) [22]. The GARS test, not a diagnostic but a genetic risk assessment [23], has shown promise as a tool for early identification in SUD [24], medical monitoring capabilities [25], obesity [26] and eating disorder risk [27], high risk for addiction liability in pain clinics [28], negative emotionality in chronic Cannabis misusers [29], prediction of clinical outcomes in Bariatric patients [30,31], profound reduction of prison time for DWI offenders adjudicated to rehabilitation [32] and even in terms of providing genetic risk in children of alcoholics (COAs) [33].

Over many decades of research, a number of investigators provided a translational and molecular cytoarchitectural framework related to both genetic and epigenetic insults on reward deficiency and drugs of abuse [34,35], gene therapy [36,37] neurotransmitters and exercise [38] molecular mechanism of pain and anti-reward symptomatology [39] and unique dopamine measurement across the brain reward circuitry [40]. Based on this work we are suggesting a paradigm shift "Precision Behavioral Management®" whereby the future is now [41].

Author Contribution

KB developed the first draft and RDB commented and help edit and added to the manuscript.

Conflict of Interest

KB is the inventor of a number of USA and Foreign patents related to, genetic testing and Pro-dopamine regulation (KB220) licensed Ivitalize Inc.

Funding Support

KB is the recipient of a NIHD grant with Marjorie Gondre Lewis -R41 MD012318/MD/NIMHD NIH HHS/United States; RDB is the recipient of 101 CX000479/CX/CSRD VA/United States/VA United States.

Acknowledgements:

We appreciate the edits of Margaret A Madigan. The authors would like to thank Richard Green of Precision Translational Medicine located in San Antonio, TX, for the term “the future is now.

Bibliography

Citation: Kenneth Blum and Rajendra D Badgaiyan. “Translational and Molecular Cytoarchitectural Genetic Guided Therapy to Induce Dopamine Homeostatic Neuro-signaling in Reward Deficiency and Associated Drug and Behavioral Addiction Seeking: A 60 Year Sojourn the Future is Now”. EC Psychology and Psychiatry 10.8 (2021): 01-04.

Volume 10 Issue 8 August 2021

©All rights reserved by Kenneth Blum and Rajendra D Badgaiyan.