Mauriac Syndrome, Rare Complication of Uncontrolled DM Type I, Case Report

Iman A Al Mukhtar1*, Nesreen AlZaki2, Fadel AlBasarah3, Zainab AlAbbas3, Fatimah AlAbbad3 and Ali AlDhamen3

1Pediatric Critical Care Consultant, Qatif Central Hospital, Qatif, Saudi Arabia
2Pediatric Endocrinology Consultant, Qatif Central Hospital, Qatif, Saudi Arabia
3Pediatric Resident, Qatif Central Hospital, Qatif, Saudi Arabia

*Corresponding Author: Iman A Al Mukhtar, Pediatric Critical Care Consultant, Pediatric Department in Qatif Central Hospital, First Health Cluster Eastern Province, Ministry of Health Saudi Arabia, Saudi Arabia.

Received: September 30, 2020; Published: October 12, 2020

Abstract

Mauriac syndrome is a rare complication of uncontrolled diabetes mellitus with growth failure, and hepatomegaly with or without association of retinopathy and nephropathy.

We hereby report a case of twelve-year old boy, known to have DM type I since age of six years. He has been poorly compliant to his medications as well as his follow up appointments, with frequent admissions to intensive care unit due to severe diabetic ketoacidosis, DKA.

As a result of his poor disease control, due to complicated socioeconomic status, he developed the following complications of growth failure, hepatomegaly, nephropathy and intellectual disability, which is consistent with typical manifestation of Mauriac syndrome.

Mauriac syndrome should be considered in any patient with poor glycemic control and aim to avoid it by achieving ideal glycemic target.

Keywords: Mauriac Syndrome; Diabetes Mellitus Type I; Diabetic Ketoacidosis DKA

Introduction

Mauriac syndrome is one of the rare complications of type I diabetes mellitus.

The condition was described by Mauriac in 1930 as “hepatic glycogenosis”. It is a condition of hepatomegaly, growth attenuation, cushingoid features and abnormal glycogen store. This condition occurs more in poorly controlled patients [1].

The pathophysiological background behind this condition is not well understood. Growth attenuation thought to be linked to a defect in response of hepatocyte receptors to growth hormone secondary to low circulating insulin. This will decrease IGF-1 level and then affect the growth [2].

Hepatomegaly has been linked to excessive glycogen deposition in hepatocyte. Genetic cause of Mauriac syndrome has been reported. It is linked to a mutation in PHKG2, that when combined with extreme hyperglycemia will inhibit glycogenolysis, and then lead to hepatomegaly [3].

Despite the advancement of long acting insulin therapy, Mauriac syndrome is still reported. In this case, we are reporting an adolescent patient diagnosed with diabetes mellitus type 1 which was poorly controlled with multiple admission due to DKA. The social background of him play a major role in the development of DM type 1 complications including Mauriac syndrome.

Case Presentation

This is a 12-year old Saudi male, diagnosed with DM type I at the age of six years. He presented with abdominal pain, vomiting and difficulty of breathing due to metabolic acidosis and hyperglycemia associated with a prolonged history of polyuria, polydipsia for around a one-month duration prior to presentation. His initial HbA1C was 20%.

He was diagnosed as DM type I and started on SQ insulin injections then was scheduled for regular follow up appointments at the endocrinology clinic, nutrition specialist, diabetic educator clinic and social support clinic.

His initial growth parameters were as follows:

- Weight: 20 kg (25th percentile)
- Height: 120 cm (25th percentile)

![Figure 1](image-url)

Subsequently, patient had frequent admissions to the intensive care unit with diabetic ketoacidosis due to poor compliance to medications, diet, follow ups. He had an average of three to five admissions per year to PICU presenting with severe DKA in addition to frequent admissions and ER visits with hyperglycemia.

His subsequent growth parameters measurements were tracked and showed slow progression of his height 2 - 3 cm/year dropping in centiles (currently below 3rd centile) and weight on the same percentile (25th).
Latest measurements were

- Weight: 27 kg.
- Height: 130 cm.

Physical examination revealed: undernourished boy, looks short, has protruded abdomen with fatty wastes, had hepatomegaly, liver was palpable 4 cm below costal margin, total span was 16 cm.

Tanner stage I, SMR prepubertal.

He was showing signs of growth retardation, failure to thrive and cushioned features.

Over a six years period, his overall condition was showing multisystemic involvement including a deterioration in cognition and school performance, development of hepatomegaly, worsening kidney function in addition to worsening vision as well.

Ophthalmology evaluation showed bilateral cataract and still on follow-up for possible surgery.

Figure 2

Figure 3: HBA1C trends: Indicating poor sugar control and poor compliance to insulin injections.
Abdominal Ultrasonography: showed mild hepatomegaly with grade 2 hepatic steatosis (Diffuse fatty liver infiltration) with renal findings consistent with diabetes-related renal papillary necrosis.

Patient was already seen by a multidisciplinary team including pediatric endocrinology, nephrology, ophthalmology, child protective services and child abuse as well as neglect committees and social workers to take over his socioeconomic and financial support, trying to

<table>
<thead>
<tr>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Blood Count CBC</td>
</tr>
<tr>
<td>WBC 18.6</td>
</tr>
<tr>
<td>RBC 4.68</td>
</tr>
<tr>
<td>HGB 12.9</td>
</tr>
<tr>
<td>WBC 76</td>
</tr>
<tr>
<td>MCV 27</td>
</tr>
<tr>
<td>MCH 12</td>
</tr>
<tr>
<td>RDW 268</td>
</tr>
<tr>
<td>PLT 18.6</td>
</tr>
<tr>
<td>Renal function test and electrolytes</td>
</tr>
<tr>
<td>Na 135</td>
</tr>
<tr>
<td>K 4.7</td>
</tr>
<tr>
<td>Cl 91</td>
</tr>
<tr>
<td>Urea 9.8</td>
</tr>
<tr>
<td>Cr 82</td>
</tr>
<tr>
<td>Albumin 4.4</td>
</tr>
<tr>
<td>Ca 8.8</td>
</tr>
<tr>
<td>Po4 5.2</td>
</tr>
<tr>
<td>Liver function test</td>
</tr>
<tr>
<td>ALT 113</td>
</tr>
<tr>
<td>AST 22.7</td>
</tr>
<tr>
<td>D.Bili 1.9</td>
</tr>
<tr>
<td>T.Bili 3.6</td>
</tr>
<tr>
<td>GGT 136</td>
</tr>
<tr>
<td>Protein 87</td>
</tr>
<tr>
<td>Lipid profile</td>
</tr>
<tr>
<td>Cholesterol 347</td>
</tr>
<tr>
<td>HDL 23</td>
</tr>
<tr>
<td>LDL 118</td>
</tr>
<tr>
<td>Triglycerine 1175</td>
</tr>
</tbody>
</table>

Table 1
improve his quality of life and to reattach him to the health care and follow ups he needed.

Eventually he had all the clinical manifestations of Mauriac Syndrome attributable to poor glycemic control.

Reversal of these manifestations was not achieved.

Discussion

Diabetes mellitus describes a complex of metabolic disorder characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action or both. A marked elevation of the BGL confirms the diagnosis of diabetes, including a random plasma glucose concentration ≥ 11.1 mmol/L (200 mg/dL) or fasting plasma glucose ≥ 7.0 mmol/L (≥ 126 mg/dL) in the presence of overt symptoms or hba1c >= 6.5% [4].

ISPAD recommend regular self-monitoring of glucose (using accurate fingerstick blood glucose measurements, with or without continuous glucose monitoring [CGM] or intermittently scanned CGM [is CGM]), in addition to intensive insulin regimens delivered by combinations of multiple daily injections or pump therapy with differential substitution of basal and prandial insulin to achieve optimal metabolic control of targeted HbA1C of < 7% [5].

Improvements in glycemic control by intensive insulin treatment as well as healthy eating principles reduce the risks of acute and long-term complications. The optimal macronutrient distribution varies depending on an individualized assessment of the young person. As a guide, carbohydrate should approximate 45% to 50% of energy, Fat < 35% of energy (saturated fat < 10%) and Protein 15% to 20% of energy [5].

Mauriac syndrome was first described by Mauriac in 1930 in children with T1DM. It is characterized by hepatomegaly, growth failure, delayed puberty, and cushingoid features [6]. Other clinical features include protuberant abdomen, proximal muscle wasting elevated liver enzymes and dyslipidemia. However, the single presenting feature of Mauriac syndrome can be glycogenic hepatopathy in both adults and children. Glycogenic hepatopathy is an underrecognized and uncommon complication of poorly controlled DM type 1 manifested by hepatomegaly, abdominal pain, nausea and vomiting, elevated serum transaminases, and elevated plasma lactate levels. It is related to combination of high blood glucose levels (which promote the flow of glucose into hepatocytes) and exogenous hyperinsulinemia (which stimulates the conversion of glucose to glycogen) [7,8].

The mechanism of growth failure in Mauriac syndrome encompasses insufficient tissue energy (glucose) availability, decreased circulating IGF-1 and a relative growth-hormone-resistant state [1]. It is also has been linked to microvascular complications, particularly to diabetic nephropathy [2]

Conclusion

Mauriac syndrome is still labeled as a rare complication of poor glycemic control in patients with DM type I, yet there is no accurate data of the actual number of cases with Mauriac syndrome worldwide.

Clinical manifestations of Mauriac syndrome of stunted growth, delayed puberty and hepatomegaly are occasionally seen in early adolescent patients. Approach of treatment is continuous insulin therapy and continuous glucose measurements. However, result of catch up growth might be reached but the therapy will not prevent further complications of retinopathy and nephropathy.

Therefore, a tight glycemic control is the golden therapy to delay DM I multisystem complications and Mauriac Syndrome manifestations can be reversed with tight sugar control, adherence to medications and follow ups.

Mauriac Syndrome, Rare Complication of Uncontrolled DM Type I, Case Report

Consent

Written consent was taken from the parents for approval of case reporting and publishing.

Acknowledgment

The authors thank Head of department of pediatrics, scientific committee and academic affairs for granting permission to publish this case.

Conflicts of Interest

None.

Funding

None.

Contribution of Authors

Preparation of first draft: I.M, F.B, F.A, Z.A.

Literature review: F.B, A.D, F.A, Z.A.

Conceptualization: F.B, A.D, F.A, Z.A.

Intellectual inputs for improvement of manuscript: I.M, F.B, N.Z.

Approval of final draft: I.M, N.Z, Z.A.

Bibliography

Volume 9 Issue 11 November 2020
©All rights reserved by Iman A Al Mukhtar, et al.