Evaluation of Efficacy of ACL Reconstruction with Use of Bone Patellar Tendon-Tube Autografts and Hamstring Autografts: A Meta-Analysis

Sajid Javed¹, Rana Dawood Ahmad Khan² and Muhammad Khurram Habib³*

¹Post Graduate Resident Orthopedic, DHQ Teaching Hospital, Faisalabad, Pakistan
²Associate Professor Orthopedics (Head of Department), DHQ Teaching Hospital, Faisalabad, Pakistan
³Assistant Professor Orthopedics, DHQ Teaching Hospital, Faisalabad, Pakistan

*Corresponding Author: Muhammad Khurram Habib, Assistant Professor Orthopedics, DHQ Teaching Hospital, Faisalabad, Pakistan.

Received: June 11, 2020; Published: July 29, 2020

Abstract

Objectives: The objective of this research work was to assess the efficacy of reconstruction of ACL with the utilization of either BPTB (Bone Patellar Tendon Tube) or HT (Hamstring) autografts.

Methodology: We searched for the already published research works in Medline and Embase. All these research works were about the comparison of the HT and BPTB autografts for the reconstruction of ACL. We utilized the Cochrane Collaboration Rev-Man 5 for the analysis of the collected information.

Results: 9 RCT (Random Controlled Trials) (with 300 patients) fulfilled the criteria of inclusion. Collaborate findings of the analysis showed that there was a significant low rate of negative pivot test Relative Risk 0.870, 95.0% CI (Confidence Intervals) 0.790 - 0.960, P = 0.0040, pain at anterior knee (Relative Risk 0.660, 95.0% CI 0.450 - 0.960, P = 0.030) and pain during kneeling (Relative Risk 0.490, 95.0% CI 0.270 - 0.910, P = 0.020) in the group of HT as compared to the group BPTB.

Conclusion: There are same after-surgical impacts of the reconstruction of ACL with the utilization of BPTB and HT autografts especially in terms of restoration of the knee joint function. There was inferiority of HT autografts to BPTB autografts for the restoration of the stability of knee joint, but it was associated with few complications after surgical interventions.

Keywords: ACL; Reconstruction; Intervention; Restoration; Bone Patellar Tendon Tube; Hamstring; Confidence Intervals; Autografts; Analysis; Random Controlled Trials

Introduction

There are many controversies about the most suitable graft for ACL reconstruction [1,2]. There are reports about allografts to have significant low rate in the achievement of the normal stability as compared to the autografts [3-5] and it is highly suitable for the multiple injured ligaments of knees needing extra tissue. So, autografts, including BPTB and HT autografts, are the grafts of choice for routine reconstruction of ACL [6]. There is provision of better stability after the reconstruction of ACL by BPTB as compared to the HT autografts [7], there is association of former with the morbidity from donor-site [8,9], an incident which is present much less commonly with the HT autografts [7,10]. One systematic research work [11] and different other analyses [7,12-14] have provided the comparison of these two choices of graft, with findings displaying no difference in the reconstruction of ACL outcomes between both types of autografts [23]. But
these research works have identified the differences in the stability of joints [7,11,13,14], complications after surgical intervention [7,13] and kneeling pain [11,15].

This research work is totally depending upon the findings of RCTs. Polling of these trials may introduce the bias, permitting the results with misinterpretations. The purpose of this research work was to perform analysis of different RCTs for the comparison of the efficacy of reconstruction of ACL with the utilization of either HT or BPTB autografts. We also took into account some current published works that were not present at the time of previous research works [7,11,14]. We conjectured in current research work that reconstruction of ACL with the utilization of either BPTB or HT autografts would provide the functional as well as stability outcomes with similarity, whereas utilization of BPTB autografts would be present with association to more complications after surgical intervention.

Materials and Methods

In his current research work, we included the RCTs related to reconstruction of ACL providing the comparison of HT and BPTB autografts and we did not include the quasi-RCTs. We included the patients present with the unilateral injury of ACL in need of reconstruction, whereas patients present with the revision of ACL or with anomalous radiograph or having injury of the opposite knee joint were not included in this current research work. Outcome evaluations included scores of IKDC, Lachman test, pain at anterior knee, pivot test, loss of extension, kneeling pain, loss of flexion, failure of graft, rate of infection and reoperation. Search features included the ACL, methods of surgical interventions for reconstruction, autologous, transplants, hamstrings, patellar ligament, gracilis and HS. We combined the results with Cochrane highly sensitive strategies of search for the identification of the RCTs, as elaborated previously [16]. We screened the research works with the analysis of their titles as well as their abstracts. We obtained the full text when it was easily possible; we compared the articles to ensure the non-repetition of the information. After gathering the data, we entered in review manager software.

We assessed the methodological quality of screened research works with the utilization of the specific tool for evaluating the bias as described by Higgins [17]. This was a 6-point scale. One point was obtained when the criteria of quality was met. We utilized the RevMan 5 software for the analysis of the collected information. Our two authors examined the information during entry to avoid any type of error. We used the RR (Relative Risk) for statistical analysis of various dichotomous variables and with 95.0% CI. We used the v2 test to evaluate the heterogeneity between various research works and we considered the P value of less than 0.10 as significant. We adopted a fixed effect model when we found no statistically significant heterogeneity significantly. We adopted a random effect model if there was presence of significant heterogeneity statistically. We performed the descriptive analysis of the data for the data which was not able to be merged because of the inconsistent type of data. We performed the sensitivity analysis with the omission of one research work one by one to check the impact of that single research work on the overall estimation of this analysis research work. We performed the PP (per-protocol) analysis first for outcome measures and then we performed its verification by the ITT (intention-to-treat) analysis.

Results

As summarized in figure 1, 65 of more than 400 research reports screened were retrieved for elaborate review initially.

We considered 26 in those RCTs as appropriate for this current analysis. Among these, 11 reports [18-28] describing 9 different RCTs were included ultimately. A sum of 300 patients got inclusion in 9 trials with 180 in group of treatment (HT) and 120 in the control group (BPTB). We divided the subjects of one trial [18] into 3 groups BPTB autografts and HT autografts with an extra articular intensification method and HT autografts with no extra articular intensification method. All the 9 included RCTs stated the loss of flexion. 3 research works reported the patellofemoral crepitation [18,25,28]; 4 stated the anterior knee pain [19-24], 5 trials stated the Lachman tests [19-23,27,28] and reoperation associated with the meniscus [18,20-23,26,27], 6 trials stated the Pivot tests [18,19,23,27,25,23] and rate of infection [18,20-26], 8 trials reported the failure of graft [18,20-28] and IKDC score [18-26,28], of which 7 trials [18-25,28] utilized the IKDC criteria of 1995 [29,30] and one trial [26] utilized the IKDC criteria of 2000 [31].
Evaluation of Efficacy of ACL Reconstruction with Use of Bone Patellar Tendon-Tube Autografts and Hamstring Autografts: A Meta-Analysis

Figure 1

Figure 2: Comparison of IKDC scores [29,30] between HTs and BPTBs after ACL reconstruction.

The range of the patients in all trials was from 12 to 64 years. Detail information of the involved trials is present in table 1 and quality estimations of all the methodologies used in the trials are available in table 2. The range of the ratio of male to female was from 1.20 to 4.80 and the range of the follow-up was from 24 - 105 months. The results of this analysis showing the comparison of the HT autografts and BPTB autografts are present in table 3.

IKDC scores of 8 trials were treated as the dichotomous variables; abnormal and severely with the normal and nearly normal but only seven trials [18-25,28] which utilized the IKDC criteria of 1995 were pooled. There were normal and nearly normal IKDC scores 120 out of 156 patients in the group of HT and 89 out of 155 patients in group of BPTB, correspondingly.

Total 5 trials [19-23,27,28] stated the post-surgical Lachman test data, but pooling of only three analyses [19-23] was carried out. Postsurgical Lachman test was present as negative in 40 out of 85 patients in HT group and 44 patients out of 78 patients in the group of BPTB. This particular analysis explained no significant disparity in the results of Lachman test after the reconstruction of ACL with the

<table>
<thead>
<tr>
<th>Included Studies</th>
<th>Patients Enrolled (H/B)</th>
<th>Sex (M/F)</th>
<th>Age (Years)</th>
<th>Follow-up (Months)</th>
<th>Depletion Number (H/B)</th>
<th>Patients Followed up (H/B)</th>
<th>HT stran ds</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson [16]</td>
<td>33/33</td>
<td>1.5</td>
<td>12 - 45</td>
<td>33</td>
<td>2/0</td>
<td>31/33</td>
<td>2</td>
<td>St Su ISc St</td>
</tr>
<tr>
<td>Beynnon [17]</td>
<td>26/26</td>
<td>1.2</td>
<td>16 - 50</td>
<td>34</td>
<td>08-Jun</td>
<td>20/20</td>
<td>2</td>
<td>ISc ISc St St</td>
</tr>
<tr>
<td>Ejerhed [18]; Lide´n [19]</td>
<td>35/32</td>
<td>2.3</td>
<td>12 - 57</td>
<td>84</td>
<td>05-Feb</td>
<td>32/30</td>
<td>3 or 4</td>
<td>ISc ISc ISc ISc</td>
</tr>
<tr>
<td>Webster [20];</td>
<td>32/29</td>
<td>2.6</td>
<td>16 - 38</td>
<td>34</td>
<td>05-May</td>
<td>29/24</td>
<td>4</td>
<td>EB P EB ISc</td>
</tr>
<tr>
<td>Feller [21]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laxdal [22]</td>
<td>88/42</td>
<td>2</td>
<td>10 - 50</td>
<td>22</td>
<td>14-Apr</td>
<td>76/38</td>
<td>3 or 4</td>
<td>ISc ISc ISc ISc</td>
</tr>
<tr>
<td>Maletis [23]</td>
<td>51/44</td>
<td>3.3</td>
<td>12 - 46</td>
<td>22</td>
<td>3/0</td>
<td>48/44</td>
<td>4</td>
<td>Sc 2 Sc ISc ISc</td>
</tr>
<tr>
<td>Drogset [25]</td>
<td>55/56</td>
<td>1.5</td>
<td>16 - 43</td>
<td>22</td>
<td>12-Aug</td>
<td>45/48</td>
<td>4</td>
<td>Sc Sc ISc ISc</td>
</tr>
</tbody>
</table>

Table 1: Details of included RCTs.

M: Male; F: Female; Fem: Femoral; Tib: Tibial; ISc: Interference Screw; EB: Endo Button; P: Post; Sc: Screw; St: Staple; W: Washer; Su: Sutures; K: Knot; BP: Bone Plug; LT: Lachman Test; PT: Pivot Test; AKP: Anterior Knee Pain; KP: Kneeling Pain; EL: Extension Loss; FL: Flexion Loss; GF: Graft Failure; IR: Infection Rate; RM: Reoperations Related to the Meniscus; PC: Patellofemoral Crepitation a Fixation Type; H/B: Hamstring (HT); BPTB: Bone-Patellar Tendon-Bone.

Evaluation of Efficacy of ACL Reconstruction with Use of Bone Patellar Tendon-Tube Autografts and Hamstring Autografts: A Meta-Analysis

<table>
<thead>
<tr>
<th>Included studies</th>
<th>Was the allocation sequence adequately generated?</th>
<th>Was the allocation adequately concealed?</th>
<th>Was knowledge of the allocated interventions adequately prevented during the study?</th>
<th>Were incomplete outcome data adequately addressed?</th>
<th>Are reports of the study free of suggestion of selective outcome reporting?</th>
<th>Was the study apparently free of other problems that could put it at a risk of bias?</th>
<th>Quality Score</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson [18]</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Beynnon [19]</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ejr hed [20]; Lide’n [21]</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Webster [22];</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Feller [23]</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Laxdal [24]</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Maletis [25]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Taylor [26]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Drogset [27]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Wipfler [28]</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Quality (risk of bias) Assessment of Included RCTs.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. of studies</th>
<th>HT</th>
<th>BPTB</th>
<th>P value for Heterogeneity</th>
<th>Analysis model</th>
<th>RR (95 % CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKDC</td>
<td>5</td>
<td>120/156</td>
<td>89/155</td>
<td>0.05</td>
<td>R</td>
<td>1.05 (0.93 - 1.19)</td>
<td>0.41</td>
</tr>
<tr>
<td>Lachman test</td>
<td>3</td>
<td>38/83</td>
<td>42/76</td>
<td>0.00001</td>
<td>R</td>
<td>0.65 (0.18 - 2.34)</td>
<td>0.51</td>
</tr>
<tr>
<td>Pivot test</td>
<td>5</td>
<td>139/181</td>
<td>156/177</td>
<td>0.11</td>
<td>F</td>
<td>0.87 (0.79 - 0.96)</td>
<td>0.004</td>
</tr>
<tr>
<td>Anterior knee pain</td>
<td>4</td>
<td>33/159</td>
<td>39/116</td>
<td>0.88</td>
<td>F</td>
<td>0.66 (0.45 - 0.96)</td>
<td>0.03</td>
</tr>
<tr>
<td>Kneeling pain</td>
<td>6</td>
<td>46/147</td>
<td>76/196</td>
<td>0.002</td>
<td>R</td>
<td>0.49 (0.27 - 0.91)</td>
<td>0.02</td>
</tr>
<tr>
<td>Extension loss</td>
<td>5</td>
<td>24/117</td>
<td>27/176</td>
<td>0.5</td>
<td>F</td>
<td>0.63 (0.39 - 1.01)</td>
<td>0.05</td>
</tr>
<tr>
<td>Flexion loss</td>
<td>3</td>
<td>60/139</td>
<td>35/103</td>
<td>0.8</td>
<td>F</td>
<td>1.03 (0.78 - 1.35)</td>
<td>0.85</td>
</tr>
<tr>
<td>Graft failure</td>
<td>8</td>
<td>15/138</td>
<td>9/191</td>
<td>0.98</td>
<td>F</td>
<td>1.37 (0.67 - 2.81)</td>
<td>0.38</td>
</tr>
<tr>
<td>Infection rate</td>
<td>6</td>
<td>8/177</td>
<td>6/120</td>
<td>0.23</td>
<td>F</td>
<td>1.04 (0.46 - 2.35)</td>
<td>0.93</td>
</tr>
<tr>
<td>Reoperations related to the meniscal</td>
<td>5</td>
<td>11/177</td>
<td>5/173</td>
<td>0.16</td>
<td>F</td>
<td>1.78 (0.75 - 4.22)</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Table 3: Meta-analysis outcomes comparing ACL reconstructions with HT autografts versus BPTB autografts. F: Fixed-Effect Model; R: Random-Effect Model.

both type of autografts (RR = 0.650, CI = 95.0% 0.180 - 2.340, P = 0.510). Total 6 trials [18,19,22,23,25,27,28] compared the postsurgical Pivot tests, but 5 trials [18,19,22,23,27] were underwent pool. Heterogeneity test displayed that there were steady results across all trials (P = 0.110). Figure 3 showed the results of analysis. We found significant difference in the postsurgical Pivot tests between both groups (RR = 0.870, CI = 95.0%, 0.790 - 0.960, P = 0.0040), showing that, after reconstruction of ACL, BPTB is superior to HT.

Evaluation of Efficacy of ACL Reconstruction with Use of Bone Patellar Tendon-Tube Autografts and Hamstring Autografts: A Meta-Analysis

Total 4 trials [19-24] stated that postsurgical anterior knee pain, occurring in 35 out of 161 HT patients and 41 out of 118 BPTB patients. Total 7 research works [20-28] compared the postsurgical occurrence of kneeling pain, but only 6 trials [20-27] underwent pool (Figure 4).

Discussion

There is one limitation of RCTs: they are suppressed with much small sizes of samples [32] and RCTs with low-quality may accountable for biased estimations of the effectiveness of treatment [33]. Systematic examinations with permits us to study the multiple RCTs of
similar nature quantitatively to rise the size of sample and it has the ability for the improvement of the statistical power. The systematic analyses may not include the research works available with low-quality analysis [33] and it can offer very good evidences for the support of the medical decision with the provision of timely updates created after the research results of the advanced trials. Systematic reviews of different RCTs of same nature gave us one single authentic information source about the efficacy of the interventions in the field of healthcare [35,36]. The variations in the quantity in RCTs can have impact on the meta-analyses [37]. Anterior stability and rotational stability are the indices of stability of knee [38]. Moreover, postsurgical instability of knee was less frequent with BPTB autografts as compared to the HT autograft after the reconstruction of ACL. This finding may be because of ligament biodynamic as well as histological features of the graft-tissue interface [39-41].

There is more rapid healing of the BPTB autografts due to their interfaces of bone-to-bone [42], while the soft interface of tissue-to-bone with HT autografts covers from 9 to 12 weeks for complete healing [43]. There is creation of the patellar bone abnormality by the harvesting of the central 3rd patellar tendon with autograft of BPTB and closure of anomaly can lead to patella baja, there can increase in the sensitivity of pain when there is direct pressing of anterior knee during walking or kneeling [44,45]. Findings of 9 different research trials stated the very high scores of kneeling pains with application of autografts of BPTB [11]. One other research work stated the median incision required for central 3rd patellar tendon’s harvesting which may harm the infra-patellar portion present in the saphenous nerve [46].

Conclusion

In the findings of this study analysis showed a significant difference between the BPTB and HT autografts regarding negative findings of pivot tests, kneeling pain and anterior knee pain. The findings of 9 different trials concluded that reconstruction of ACL with the use of HT autografts obtained same after surgical impacts in terms of restoration of function of knee joint to the BPTB autografts.

Bibliography

Evaluation of Efficacy of ACL Reconstruction with Use of Bone Patellar Tendon-Tube Autografts and Hamstring Autografts: A Meta-Analysis

