Golden Trade-Offs Management For TKA: A Mini Review

Khalifa Elmajri*

Claude Bernard University Lyon and Fellow center Albert Trillat, Hôpital de la Croix-Rousse 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France

*Corresponding Author: Khalifa Elmajri, Claude Bernard University Lyon and Fellow center Albert Trillat, Hôpital de la Croix-Rousse 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France.

Received: November 21, 2016; Published: December 01, 2016

Pain relief and restoration of function including high-flexion activities are part of successful TKA. This depends on many factors among them:
1-Preoperative ROM
2-Implant design
3-Intraoperative soft tissue balancing
4-Posterior Tibial slope (PTS)
5-Femoral rollback and external femoral rotation during flexion (J Victor., et al. 2006).

Balancing these requirements is not simple because the human knee flexion occurs in six degrees of freedom in space including rotation along the horizontal axis (Flexion), translation along the sagittal axis (roll-back of the femur) and rotation over the coronal axis (femoral external rotation). Computer-assisted surgery (CAS) does not take the place of clinical judgment [1] but can be used by the surgeon to make surgical decisions. CAS modeling depends on the definition of geometrical landmarks [2].

In the literature, there are many anatomical landmarks definition and angular measurements documented with its possible relation to clinical situations. These parameters summarized in the table 1 below:

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCO = Posterior Femoral Condylar Offset</td>
<td>PCO = max AP diameter of the femoral component</td>
</tr>
<tr>
<td>LPCO = Lateral Posterior Condylar Offset</td>
<td></td>
</tr>
<tr>
<td>MPCO = Medial Posterior Condylar Offset</td>
<td></td>
</tr>
<tr>
<td>Medial Posterior Condylar Offset (MPCO)/Lateral Posterior Condylar Offset (LPCO) Ratio</td>
<td></td>
</tr>
<tr>
<td>PCRA = Posterior Condylar Rotation Angle</td>
<td></td>
</tr>
<tr>
<td>MATO = Medial Anterior Trochlear Offset</td>
<td></td>
</tr>
<tr>
<td>LATO = Lateral Anterior Trochlear Offset</td>
<td></td>
</tr>
<tr>
<td>MATO/LATO Ratio</td>
<td></td>
</tr>
<tr>
<td>TRA = Trochlear Rotation Angle</td>
<td></td>
</tr>
<tr>
<td>PCOR = Posterior Condylar Offset Ratio</td>
<td></td>
</tr>
<tr>
<td>sTEA = surgical Trans-Epicondylar Axis</td>
<td></td>
</tr>
<tr>
<td>cTEA = clinical Trans-Epicondylar Axis</td>
<td></td>
</tr>
<tr>
<td>PCA = Posterior Condylar Angle = angle between the surgical TEA and PCL</td>
<td></td>
</tr>
<tr>
<td>CTA = Condylar Twist Angle = Angle between the clinical TEA and PCL</td>
<td></td>
</tr>
<tr>
<td>FATL = Femoral Anterior Tangent Line</td>
<td></td>
</tr>
<tr>
<td>NWR = femoral Notch Width Index</td>
<td></td>
</tr>
</tbody>
</table>

Golden Trade-Offs Management For TKA: A Mini Review

<table>
<thead>
<tr>
<th>TA = Trochlear Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFSD = Patello-Femoral Space Distance</td>
</tr>
<tr>
<td>MS AP D = Medial Sulcus AP Distance</td>
</tr>
<tr>
<td>MS ML D = Medial Sulcus ML Distance</td>
</tr>
<tr>
<td>MS AP/ML ratio = Medial Sulcus AP/ML ratio</td>
</tr>
<tr>
<td>FAR = Femoral aspect ratio = ratio between AP and ML tibial diameter</td>
</tr>
</tbody>
</table>

Basically, used are

Surgical Transepicondylar axis (sTEA [3]): Axis that connected the center of the sulcus of the medial epicondyle and the most prominent point of the lateral epicondyle.

Clinical Transepicondylar (cTEA): Axis that connected the most prominent points of the medial and lateral epicondyles. Posterior condylar angle = angle between the surgical TEA and PCL.

Condylnar twist angle: angle between the clinical TEA and Posterior Femoral Condylar Offset (PCL [4]).

Femoral anterior tangent line (FAT line [5]) is a useful index for appropriate rotational alignment of femoral component, both before and during TKA (jig used).

Femoral notch width index (NWI) [6].

The surgeon’s ability to reproducibly identify the bone landmarks accurately used in measured resection techniques is limited [7] therefore surgeons should be aware of the variability of the distal femur in patients undergoing TKA and perform additional measurements preoperatively to achieve proper alignment [8]. CAS would add additional elements that help the balance techniques achieving the golden (trade-offs management) approaches for TKA.

Gender dependent Landmarks and angle variations

TKA has shown in all series that between 65% and 70% of the patients are women, and independent of AP dimension, women tended to have a narrower ML dimension (Chin KR., et al. 2002).

Femoral ML: AP Ratios for the Female Knee show a clear tendency for all implants to become a problem with ML oversizing for a given AP diameter; Particularly with larger sizes. women have a femoral aspect ratio higher for smaller knees and proportionately lower for larger knees [9].

For the same anteroposterior (AP) measurement [10] in female

1. The mediolateral (ML) is smaller
2. The Anterior aspect of the femur, lateral condyle higher and more proximal than the medial condyle also the anterior condyle is less prominent
3. The patella more lateralized
4. The anatomical-axis-change angle demonstrated internal rotation of the female knee
5. The sulcus significantly flatter. Flatter sulcus with larger Q-angle in the female knee + Internal femoral rotation in female knees along their transepicondylar axes lead to patellar instability (patella lateral subluxation) and patellar malt racking (more wear)

Golden Trade-Offs Management For TKA: A Mini Review

Some technical remarks

In hybrid approach Resection Technique [11] (Gap Balancing and Measured Resection Technique), landmarks are used widely and this require a sound understanding of the native rotational geometry of the knee for correct positioning of the femoral component in the axial plane in TKR [12].

2 mm decrease in posterior condylar offset reduced postoperative flexion by 12.2° (Belleman., et al. 2002). Traditional femoral implant when used with less-prominent anterior femoral aspects will lead to anterior knee pain, especially on the most lateral side.

Resection additional bone from the posterior femur will decrease the femoral offset theoretically [13] and decrease flexion as a result of impingement.

Femoral external rotation during flexion reduces the Q-angle and patellar shear force and patellofemoral joint reaction force decreases [14]. this could augment ratio of wear of polyethylene inserts (Hyuksoo Han., et al. 2015).

Increased lateral joint opening and Lift-off [15,16] associated with increased internal rotation of the femoral component.

Bibliography

10. A report by Jean-Noel Argenson Professor and Chairman, Department of Orthopaedic and Traumatologic Surgery, The Aix-Marseille University, Hôpital Sainte-Marguerite, Marseille

Golden Trade-Offs Management For TKA: A Mini Review


Volume 4 Issue 5 December 2016
© All rights reserved by Khalifa Elmajri.