A Novel Diagnostic Biomarker, PSMB9/\(\beta\) 1i, For Human Uterine Leiomyosarcoma

Takuma Hayashi
International University of Health and Welfare
Japan

Takuma Hayashi\(^1,2\)*, Miki Kawano\(^1\), Tomoyuki Ichimura\(^3\), Dorit Zharhary\(^4\), Yae Kanai\(^5\), Susumu Tonegawa\(^6\), Tanri Shiozawa\(^7\), Nobuo Yaegashi\(^8\) and Ikuo Konishi\(^9\)

\(^1\)Department of Medical Technology, International University of Health and Welfare, Japan
\(^2\)Department of Obstetrics and Gynaecology, Shinshu University School of Medicine, Japan
\(^3\)Department of Obstetrics and Gynaecology, Osaka City University Graduate School of Medicine, Japan
\(^4\)SIGMA-Aldrich Israel, Rehovot, Israel
\(^5\)Pathology Division, Keio University School of Medicine, Japan
\(^6\)Department of Biology, Massachusetts Institute of Technology, USA
\(^7\)Department of Obstetrics and Gynaecology, Tohoku University Graduate School of Medicine, Japan
\(^8\)National Hospital Organization Kyoto Medical Centre, Kyoto, Japan
\(^9\)SIGMA-Aldrich Collaboration Laboratory

COLUMN ARTICLE

Takuma Hayashi (Shinshu University) discussed a novel biomarker for detecting leiomyosarcoma (LMS). Patients with uterine LMS typically present with vaginal bleeding, pain and a pelvic mass, with atypical presentations of hypercalcemia and eosinophilia also being reported. There is concern that radiographic evaluation with combined positron emission tomography/computed tomography, which is commonly used to aid assessment of patient prognosis, might not necessarily be effective for diagnosis and surveillance of uterine LMS. Unfortunately, radiographic imaging cannot provide any medical information to help distinguish malignant LMS from other mesenchymal tumours. Importantly, diagnostic biomarkers that can distinguish between LMS and leiomyoma (LMA) are not yet established.

Hayashi’s research group reports that PSMB9/\(\beta\) 1i-deficient mice exhibit spontaneous development of uterine LMS, with a disease prevalence of \(\sim 37\%\) by 12 months of age \([1]\). The current focus of Hayashi’s research is to probe the loss of PSMB9/\(\beta\) 1i expression in human LMS, as well as the detectable expression of the protein in human LMA \([2,3]\). Defective PSMB9/\(\beta\) 1i expression is likely to be one of the risk factors for the development of human uterine neoplasms, as it is in the PSMB9/\(\beta\) 1i-deficient mouse. Thus, PSMB9/\(\beta\) 1i is useful as a novel diagnostic biomarker for human uterine LMS, and Hayashi’s research group have been trying to establish novel diagnostics with PSMB9/\(\beta\) 1i to the uterine LMS under the SIGMA-Aldrich Collaboration Laboratory.

The IHC experiments demonstrated that although normal myometrium tissues (73 cases) and uterine leiomyoma tissues (52 cases) markedly expressed PSMB9/\(\beta\) 1i, uterine LMS tissues (58 cases) did not (Figure 1). Defective PSMB9/\(\beta\) 1i expression is likely to be one of the risk factors for the development of human uterine neoplasm, as it is in the PSMB9/\(\beta\) 1i-deficient mouse. Thus, PSMB9/\(\beta\) 1i is useful for a novel diagnostic biomarker for human uterine LMS \([2,3]\). Because there is no effective therapy for unresectable uterine LMS, our results may bring us to specific molecular therapies to treat this disease \([4]\).

Citation: Takuma Hayashi., et al. “A Novel Diagnostic Biomarker, PSMB9/\(\beta\) 1i, For Human Uterine Leiomyosarcoma?”. EC Gynaecology ECO.01 (2016): 05-06.
A Novel Diagnostic Biomarker, PSMB9/β1i, For Human Uterine Leiomyosarcoma

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>n</th>
<th>PSMB9/β1i expression*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Normal</td>
<td>32–83</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Leiomyoma (Cellular leiomyoma) (Ordinary Leiomyoma) (Tumour of Uncertain malignant potential)</td>
<td>33–83</td>
<td>52</td>
<td>(10)</td>
</tr>
<tr>
<td>Bizarre Leiomyoma</td>
<td>44,49,55</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>32–83</td>
<td>58</td>
<td>49</td>
</tr>
</tbody>
</table>

Staining score of PSMB9/β1i expression from results of staining experiments. -/+1: Partially positive (5% to 10% of cells stained), focal +2: focal positive (focal or sporadic staining with less than 5% of cells stained), +++3: diffuse-positive (homogenous distribution with more than 90% of cells stained), -: negative (no stained cells).

BIBLIOGRAPHY

©All rights reserved by Takuma Hayashi., et al.