Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments

Nassira Tabli* and El-hafid Nabti

Renewable Energy Management Laboratories, Faculty of Natural and Life Sciences, University of Bejaia, Algeria

*Corresponding Author: Nassira Tabli, Renewable Energy Management Laboratories, Faculty of Natural and Life Sciences, University of Bejaia, Algeria.

Received: January 14, 2020; Published: February 13, 2020

Abstract

The interest aroused in bacteria from irrigation wells results from their involvement in maintaining soil health and the good development of crops. 48 bacterial isolates are purified from water from a well located in northern Algeria. 4 strains are selected based on their inhibitory effect on two phytopathogenic fungi, as well as their ability to express a few traits promoting plant growth, namely; indol acetic acid, lytic enzymes, phosphate solubilization, production of iron fixing siderophores, etc. Following the sequencing of rR16S, the strains; B, D and N are affiliated with Pseudomonas protegens, while C is a Serratia carnivoran. The growth inhibition percentages for Botrytis cinerea and Aspergillus niger range from 60 to 90%. The strains produce volatile compounds with PGI% ranging from 13 to 50%. An in vivo greenhouse test is carried out to determine the stimulating effect of the 4 isolates on the growth of tomato and pea plants, and the protection of the latter in the presence of Pythium aphanidermatum spores, the N strain significantly improved the germination of peas (+ 25%) and their fresh weight (+ 43%), as well as the fresh weight of the tomato stems (+ 10%). These results support the use of PGPB as growth promoters and protectors for plant health.

Keywords: Pseudomonas; Aquatic Bacteria; Biocontrol Agents; PGPB

Introduction

The global population explosion, and the continuous degradation of the environment have worrying consequences on food production, which becomes insufficient to feed this growing population. This decrease in production is due to certain abiotic and biotic factors [1]. The biotic factors represented by plant diseases caused by bacteria, fungi, viruses, and nematodes are considered a major problem reducing the final yield of crops and post-harvest losses (Borges, et al. 2014). It has therefore become essential to increase agricultural production and minimize losses by looking for alternative methods [2]. With intensive agricultural production, producers have become increasingly dependent on chemical synthesis products to protect crops [3]. Unfortunately the increasing (increased) use of chemical inputs has serious consequences, namely; resistance to pathogens, their accumulation in the environment, and the appearance of harmful effects on other non-target organisms [4]. The use of PGPB as growth promoters and crop protectants is increasingly documented [5-7]. These bacteria act through direct and indirect mechanisms. The genera Bacillus and Pseudomonas are the most studied for their various PGP and biocontrol traits [8].

Citation: Nassira Tabli and El-hafid Nabti. “Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments”.

EC Nutrition 15.3 (2020): 01-06.
Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments

Material and Methods

Water sampling
The water samples are taken from an agricultural well in northern Algeria; Djebira village (36° 41'59.2" N 5° 04'28.8" E). The bacteria are isolated and purified on PCA agar and stored for later testing.

The antifungal test
48 bacterial isolates are tested for *A. niger* and *B. cinerea* according to the protocol of Sagahón, *et al.* [9]. The dishes are incubated at 25 ± 2°C for 5 days, the percentages of inhibition of mycelial growth (PGI%) are calculated. The four best isolates selected from the previous test are phylogenetically identified by sequencing their rr16s [10,11].

Research of some PGP and biocontrol traits
- **Inhibition of spore germination:** The ability of bacterial isolates to inhibit the growth of the two fungi (*A. niger* and *B. cinerea*) is tested through their ability to inhibit the germination of spores. The protocol followed is that of Sadfi-Zouaoui, *et al.* [12], and the results are expressed by the calculation of the percentage of inhibition of spore germination (SGI%).
- **Synthesis of volatile antifungal substances:** The production of volatile compounds involved in the antagonistic activities is tested according to the protocol described by Dennis and Webster [13], the radial fungal growth is recorded 7 days later, and the PGI% values are obtained by comparing to the control.

Metabolic and functional characterization
- **Lytic enzymes:** The search for hydrolytic enzymes is carried out using the agar diffusion method, by depositing a 5mm disc of the bacterial culture on agar medium containing the substrate for the desired enzyme. The activities highlighted are: cellulase [14], esterase [15], lipase [15], chitinase [16], protease [15], amylase [17] and urease [18].
- **Solubilization of phosphorus:** The test is carried out on Pikovskaya agar medium, as described by Peix, *et al.* [19]. A positive result is reflected in the appearance of a transparent halo around the colonies.
- **Production of siderophores:** The search for iron fixing siderophores is carried out on agar medium Chrom Azurol-S, according to the protocol of Schwyn and Neilands [20].
- **AIA synthesis:** The production of this phytohormone is determined according to the protocol of Bric, *et al.* [21]. The assay is spectrophotometric (530 nm), and the results are obtained by extrapolation on a calibration curve.

In vivo tests
- **Promotional effect of tomato growth:** The 4 bacterial isolates served as an inoculum, and are tested on tomato plants in pots in a greenhouse. The strains of *Pseudomonas* protegens CHA0, and *Pseudomonas* sp DSMZ13134 are used in the experiment as reference strains, the detailed protocol is that of Tabli, *et al.* [22].
- **Control of damping-off of seedlings on pea seeds:** The protocol is that followed by Tabli, *et al.* [22]. As for the tomato test, the isolates; B, C, D and N are the test strains in soil inoculated with spores of *Pythium aphanidermatum*, and the strains of *Pseudomonas* protegens CHA0, and *Pseudomonas* sp DSMZ13134 are the reference strains. 60 days after sowing the percentage of emergence of the plants and their total fresh weight are measured.

Results and Discussion

Inhibition of mycelial growth
Of the 48 isolates, the strains; B, C, D and N appeared to be the most effective of the two phytopathogens tested. B and N showed the greatest activity towards *A. niger* (90%), and around 68% for isolates C and D. Isolate a D shows 82.5% inhibition against *B. cinerea*. The isolates N, C and B showed PGI% ranging from 63% (B), to 80% (N).
Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments

Inhibition of spore germination

The presence of the 4 strains reduced A. growth by 20%. *A. niger*, while for *B. cinerea* the inhibition is total (100%).

Phylogenetic identification

Phylogenetic analysis showed that the rRs16 gene sequences of isolates B, D and N are the closest to *Pseudomonas* protegens CHA0 (99.93%), while isolate C exhibits the highest similarity (99.86%) with Serratia carnivorans.

PGP and biocontrol features

The four strains produce the enzymes; lipase, chitinase, esterase and urease, but not Amylase, strain C is the only phosphorus solubilizer. All of the strains synthesize siderophores, and produce ammonia. Strains C and N produce more HCN compared to B and D. The values of AIA vary between 2.40 µg/ml ± 0.65 and 5.09 µg/ml ± 0.65 as the minimum and maximum value produced by strains C and D respectively.

Synthesis of volatile substances

PGI% values for *A. niger* following the production of volatile compounds by strains B, C, D and N vary between 8 and 22%. Strain C showed the best inhibitory effect (50.8%) against *B. cinerea* compared to the other strains.

Growth promoting effect on tomato plants

The strain C significantly increased the fresh weight (+ 15%) compared to the non-inoculated controls, the growth was better than the other strains tested including those of references CHA0 and DSMZ13134.

Pythium aphanidermatum control on peas

Infection with *Pythium aphanidermatum* reduced the emergence of peas from 83.3% in the uninoculated control to 7.5% in the soil inoculated with the pathogen. All the isolates except for isolate D reduced the damping-off of the seedlings but remains significant just for the strain N, the emergence is 26.3% (7 times compared to the control) than the reference strains CHA0 and DSMZ13134 which stimulated the emergence of 43 and 2 times respectively. Strains B and C did not show a significant difference in emergence compared to the control. In the soil inoculated with the fungus the weight is reduced from 05g/plant (control) to 0.23%. The isolate N and CHA0 alone stimulated the fresh weight with 43% and 48%, no increase in weight was recorded for the rest of the strains (DSMZ13134, D, C, B).

Discussion

Following the serious problems caused by chemical pesticides, the application of antagonistic microorganisms or their metabolites is another alternative. The bacteria isolated in this present work are known for their inhibitory effect on phytopathogens by several mechanisms [23-25]. According to Rai, et al. [24], a strain of *Pseudomonas* protegens RhiNA inhibited the mycelial growth of *A. flavus, B. cinerea, A. niger* and *Mucor* sp. This activity is attributed to the production of various metabolites. *Pseudomonas* strains produce antibiotics, phytohormones, lytic enzymes and siderophores [26,27]. The isolates tested in this work produce these metabolites, which may explain their effectiveness in stimulating the growth of tomatoes and peas. Extracellular enzymes are also known for their role in biocontrol, certain bacterial enzymes destroy spores, prevent their germination, and inhibit mycelial growth [28]. Suresh., et al. [29] and Raaijmakers., et al. [30] reported the PGP role of *Pseudomonas* through the synthesis of HCN, Siderophores, proteases, antimicrobial agents and solubilization of phosphorus.

Serratia stimulated pea germination by 83% in the presence of *P. aphanidermatum* and tomato growth by 15%, such PGP traits and biocontrol can be explained by their capacity to produce AIA phytohormone, siderophores, solubilization of phosphorus and degradation of chitin [30]. Volatile compounds (NH3 and HCN) can also be the cause of inhibition of mycelial growth [31]. Ponmurugan and Gopi [32] reported the role of *Pseudomonas*-produced AIA in stimulating the root development of small peas. According to Kraus and Loper [33], a

Citation: Nassira Tabli and El-hafid Nabti. “Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments”. *EC Nutrition* 15.3 (2020): 01-06.
Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments

A strain of *Pseudomonas* stimulated cucumber germination in the presence of Pythium through competition for nutrients and the secretion of antifungal metabolites such as siderophores and chitinases. The inhibitory effect of the N strain on pythium can be attributed to the production of siderophores, proteases, chitinases and AIA [34,35].

Conclusion

Water from irrigation wells has become a source of bacteria of agricultural interest. We managed to isolate 3 strains of *Pseudomonas* and a strain of *Serratia* which we selected on the basis of preliminary tests of growth promotion and biocontrol through inhibition of the germination of spores and that of mycelial growth. These effects also appeared once these bacterial isolates are applied *in vivo* on tomato plants and pea seeds, the parameters; emergence and fresh weight are measured in the presence and absence of *P. aphanidermatum*. These results make it possible to consider irrigation well water as a source of bacteria with a growth stimulating role and an inhibitor of phytopathogens.

Bibliography

Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments

18. Christensen WB. “Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types”. Journal of Bacteriology 52 (1946): 461-466.

Citation: Nassira Tabli and El-hafid Nabti. “Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments”.
EC Nutrition 15.3 (2020): 01-06.
Isolation of Bacteria Producing Antifungal Substances from Aquatic Environments

Volume 15 Issue 3 March 2020
©All rights reserved by Nassira Tabli and El-hafid Nabti.