Microbial Assessment of Zobo Drink Sold in Some Locations in Yenagoa Metropolis, Nigeria

Lovet T Kigigha1, God’sgift A Samson1, Sylvester C Izah1* and Ebinyo R Aseibai2

1Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa state, Nigeria
2Department of Science Foundation, School of Foundation Studies, Bayelsa state College of Health Technology, Otuogidi, Nigeria

*Corresponding Author: Sylvester C Izah, Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa state, Nigeria.

Abstract

This study investigated the microbial quality of zobo drink sold in some major markets area of Yenagoa metropolis, Bayelsa state, Nigeria. Triplicate sample of zone was obtained from 5 locations in Yenagoa metropolis, Bayelsa state, Nigeria. The TCFU/ml of the samples was assessed using standard microbiological procedure. Results showed that total heterotrophic bacteria counts (4.16 - 5.71 Log cfu/ml), total coliform counts (1.66 - 2.63Log cfu/ml) and total fungi counts (2.64 - 4.58 Log cfu/ml) was significantly different (P < 0.05) among the different locations for each of the microbial parameter studied. The microbial counts were observed to be within limits specified by Food and Agricultural Organization, Food Quality Check Programme and International Commission on Microbiological Specifications for Foods. Furthermore, the presence of coliforms suggested likely fecal contamination. The tentatively identified microbial species include Escherichia coli, Staphylococcus aureus, Bacillus, Enterobacter, Micrococcus and Proteus species (bacteria), Aspergillus niger, Aspergillus flavus, Penicillium and Fusarium (fungi). Among the isolates, S. aureus appeared in all the samples which is an indication of poor handling processes. Hence, there is the need for improve handling processes during processing and storage of zobo sold in the metropolis.

Keywords: Food Drink; Health Concern; Microorganisms; Yenagoa Metropolis; Zobo

Introduction

Different kinds of ready to eat foods abound in Nigeria. Typically, they exist as solid foods and drinks. Some notable food drink such as zobo has gained prominence in Nigeria irrespective of ethnicity and socioeconomic class [1-3]. Like most drinks that are processed traditionally, zobo drink could be a means of transmitting pathogenic microbes which could cause disease condition especially the ones prepared under unhygienic condition.

Typically, zobo is prepared from the calyces of Hibiscus sabdariffa [1,2,4-11]. According to Adanlawo and Ajibade [12], Ilondu and Iloh [13], two varieties of H. sabdariffa exist in Nigeria including red/brown and green variety, and they are distributed into different environment including Northern guinea and Sudan savanna (brown/red variety) and Southern Guinea savanna (green variety).

H. sabdariffa have varying economic importance. They are used in preparation of other drinks in other part of Africa including Senegal (bissap), Egypt (drink of the Pharaohs), Sudan (tea Karkade), Mali (da Bilenni) [1,14], Zobo (Nigeria). In Nigeria, zobo are called several names depending on the location and tribe. Furthermore, H. sabdariffa is used for the production fermented food called Furundu (Sudan), dawadawa botso (Niger), datou (mali) and Mbuja (Camereun) [1,15-17].
Microbial Assessment of Zobo Drink Sold in Some Locations in Yenagoa Metropolis, Nigeria

Zobo drink is produced in both Northern and Southern regions. The drink is mostly prepared in conditions lacking quality control measures in Nigeria. In addition, preservation are among the major challenges confronting the shelf life of the drink. Several microbial species belonging to several genera (viz: Bacillus, Streptococcus, Staphylococcus, Aeromonas, Corynebacterium, Veillonella, Micrococcus, Pseudomonas, Enterococcus, Leuconostoc, Lactobacillus, Enterococcus, Escherichia, Proteus (bacteria), Aspergillus, Penicillium, Saccharomyces, Lactobacillus, Geotrichum, Fusarium, Alternaria, Candida and Mucor) have been reported in Zobo drinks sold in different locations in Nigeria [1,2,7,8,18,19]. Majority of microorganisms of these genera have been implicated to cause zobo spoilage and disease especially in immunocompromized individuals. For instance Bankole, et al. [20], listed Bacillus, Streptococcus, Staphylococcus, Leuconostoc, Lactobacillus, Aspergillus, Penicillium, Geotrichum, Fusarium and Alternaria species as potential microbes that could deteriorate zobo drink. Umaru., et al. [5] stated that consumption of local beverages could be a potential source of transfer of zoonotic and foodborne pathogens including Staphylococcus, Salmonellosis, Brucellosis, Tuberculosis, Shigellosis, Listeriosis, E. coli infections etc.

Several studies have been carried out with regard to microbial density found in zobo drink consumed in Nigeria including Kano metropolis, Kano state [21], market in Aba, Abia State [11], Jos metropolis, Plateau state [22], Awka metropolis, Anambra state [23], some markets, Osun state [10], Ibadan metropolis, Oyo state [24], market, Abakaliki, Ebonyi state [9], markets, Umuahia, Abia state [25]. But information about the quality of zobo sold in Yenagoa metropolis appears scanty in literature. Hence this study aimed at assessing the microbial population found in zobo drink sold in Yenagoa metropolis, Bayelsa state, Nigeria.

Materials and Methods

Study Area

The study area was carried out in Yenagoa metropolis, Bayelsa state capital. The study has two predominant seasons wet season (April to October with intermittent break in August called August break) and dry season (November to March of the following year) [26]. The relative humidity is about 60 - 95% during the wet season and 50 - 80% during the dry season. The temperature in the area is 30 ± 6°C all year round. The study area is one of the growing cities in Nigeria with population significantly exceeding what is estimated during the last national census. Like other cities in Nigeria, several activities take place in Yenagoa metropolis, Bayelsa state. The region has several tributary Nun River (a major river in Bayelsa state), and Epie creek run through Igbogene to Government house, aligning the major road (Mbiama-Yenagoa road) [27-29].

Field Sampling

Zobo samples were purchased in five major market areas of Yenagoa metropolis including Akenfa, Etegwe Junction, Agudama-Epie, Igbogene and Opolo. The samples were purchased in triplicate. The samples were transported to the laboratory in ice box and preserved at 4°C prior to analysis.

Microbial Counts Enumeration

The enumeration of the microbial population in the zobo drinks were carried out using four different media; three for bacteria (including Nutrient Agar, which is used to enumerate obligate and facultative bacteria; MacConkey Agar were used for the enumeration of bacteria of the Enterobacteriaceae including coliforms; Salmonella-Shigella Agar were used to enumerate Salmonella and Shigella) and one for fungi (Potatoes Dextrose Agar was used to enumerate fungi). All the media were prepared according to the manufacturers’ guide. The samples were serial diluted and pour plate method previously described by Pepper and Gerba [30], Benson [31] was adopted in the study. Approximately 1 ml of the serial diluted samples was plated in the petri dish meant for the different media. The samples meant for bacteria (Nutrient Agar, MacConkey Agar and Salmonella-Shigella Agar) were incubated inverted at 37°C for 24 - 48 hours, while the Agar plate meant for fungal counts (i.e. containing Potatoes Dextrose Agar) was incubated inverted at 30°C for 3 - 5 days. After incubation, the resultant colonies were counted and expressed in colony forming units per millitre (cfu/ml) of the zobo samples

Microbial identification

Microbial Assessment of Zobo Drink Sold in Some Locations in Yenagoa Metropolis, Nigeria

Bacteria Identification

The biochemical tests were carried out using the guide of Cheesbrough [32] and Benson [31]. All the bacteria isolates were cultured on Nutrient Agar prior to use for biochemical tests (viz. gram reaction, motility, indole, catalase, coagulase, urease, citrate). The resultant characteristics were compared with those of known taxa using Bergey’s Manual of Determinative Bacteriology by Holt., et al. [33] and the scheme of Cheesbrough [32]. Based on gram reaction, the gram positive cocci organisms were streaked onto Mannitol Salt Agar plate and incubated at 37°C for 24 hours. The presence of yellowish pigments in Mannitol Salt Agar indicates Staphylococcus aureus. The pure cultures from MacConkey agar were first streaked in nutrient agar before being streaked again in Levine’s Eosin Methylene Blue (EMB) Agar and incubated at 37°C for 24 hours. The presence of small nucleated colonies with greenish metallic sheen indicates E. coli [31]. Furthermore, isolates were streaked in blood agar, and after incubation the presence of swarming characteristics indicates Proteus species.

Identification of fungi isolates

The scheme of Pepper and Gerba [30] and Benson [31] was adopted for the microscopic and macroscopic approach of mold identification. The macroscopic/colonial characteristics were carried out based on the morphology, while the microscopic identification was carried out using Lactophenol cotton blue stain on a smeared isolates. The resultant characteristics based on microscopic examination was compared with the guide provided by Ellis., et al. [34] and Benson [31], while the macroscopic morphology were similarly compared with the guide provided by Benson [31].

Statistical analysis

Statistical Package for Social Sciences software version 20 was used for the statistical analysis. Descriptive statistics i.e. mean ± standard error values were expressed for log transformed microbial counts. One-way analysis of variance was carried out at P = 0.05, and Tukey HSD statistics was used for mean separation.

Results and Discussion

The microbial population of zobo drink sold in some major market areas of Yenagoa metropolis, Bayelsa state, Nigeria is presented in table 1. The microbial population of total heterotrophic bacteria counts in the various locations ranged from 4.16 - 5.71 Log cfu/ml, being not significantly different (P > 0.05) among the various markets apart from Etegwe and Igboegene that were also not significantly different (P > 0.05). The total coliform counts ranged from 1.66 - 2.63 Log cfu/ml, being not significantly different (P > 0.05) apart from the samples collected from Opolo. The total fungi counts ranged from 2.64 - 4.58 Log cfu/ml, being not significantly different (P > 0.05) except for samples obtained from Opolo.

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Heterotrophic Bacteria counts, Log cfu/ml</th>
<th>Total coliform counts, Log cfu/ml</th>
<th>Total Fungi, counts, Log cfu/ml</th>
<th>Salmonella-Shigella counts, cfu/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akenfa</td>
<td>4.40 ± 0.19a</td>
<td>2.62 ± 0.15b</td>
<td>3.53 ± 0.28abc</td>
<td>ND</td>
</tr>
<tr>
<td>Etegwe Junction</td>
<td>5.41 ± 0.17b</td>
<td>2.38 ± 0.20ab</td>
<td>3.91 ± 0.41bc</td>
<td>ND</td>
</tr>
<tr>
<td>Agudama-Epie</td>
<td>4.48 ± 0.17a</td>
<td>2.53 ± 0.23ab</td>
<td>3.08 ± 0.29ab</td>
<td>ND</td>
</tr>
<tr>
<td>Igboegene</td>
<td>5.75 ± 0.05b</td>
<td>2.56 ± 0.24b</td>
<td>4.58 ± 0.13c</td>
<td>ND</td>
</tr>
<tr>
<td>Opolo</td>
<td>4.16 ± 0.10a</td>
<td>1.66 ± 0.08a</td>
<td>2.64 ± 0.06a</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 1: Microbial density of zobo drink sold in some major market area of Yenagoa Metropolis, Bayelsa state, Nigeria.

Data are expressed as mean ± standard error (n = 3); Different letters (a, b, c) across the row indicate significance variation (P < 0.05) according to Tukey HSD statistics; ND: Not Detected

The various microbial parameters showed significant difference ($P < 0.05$). This could be associated to changes in handling processes prior to purchase. The quality of the packaging material (emptied used soft drink and water) could also contribute to variation in the drink. Furthermore handling and storage period could also account for the variation that exists among the different locations. This is because some microbes have a very short period of proliferation under suitable environmental condition [35]. Furthermore, instances of no variation between means of some zobo samples obtained from two or more locations using tukey test could be due similarity in productions and packaging processes, and hygienic status of vendors. As observed during the collection of samples a zobo vendor was seen hawking the fruit drink in two different markets area. This observation have been previously made by Izah., et al [36] among vendor that sold prepared fruits (pineapple, paw-paw and water melon) in Yenagoa metropolis, Nigeria. However, the microbial population of the drink is within aerobic plate count for zobo (10^4) [10] apart from few instances i.e. Etegwe and Igbogene for total heterotrophic bacteria counts. The density were within the limit (10^4) recommended by Food and Agricultural Organization [21,37], Tolerable limits ($10^4 - 10^5$) for ready- to-eat food [1,38-41] and lower than the limit of 10^6 for Food Quality Check Programme limits [23,42].

Like water, coliform is not supposed to be found in zobo. As such, their occurrence suggests contamination. The findings of this study have some similarity with previous study. For instance, Bukar., et al [21] reported total viable bacterial counts in the range of < 30 - 1.23 x 10^4 cfu/ml in zobo sold in Kano metropolis, Kano state. Ezeigbo., et al [11] reported total viable counts ($0.3 - 4.4 \times 10^6$ cfu/ml), total coliform ($0.1- 6.5 \times 10^4$ cfu/ml) in zobo sold in Market in Aba, Abia State, Southeast Nigeria. Zumbes., et al. [22] reported total viable counts ($5.20 - 7.70$ cfu/ml), total coliform (1×10^4 cfu/ml) in zobo sold in Jos metropolis, Plateau state. Anagu., et al. [23] reported total viable bacterial counts in the range of $3.0 \times 10^2 - 1.0 \times 10^5$ cfu/ml in zobo sold in Awka metropolis, Anambra state. Risiquat [10] reported total viable bacterial counts in the range of $1.2 \times 10^2 - 1.2 \times 10^6$ cfu/ml in zobo sold in Markets, Osun state. Slight variations that exist in the findings of this study when compared with previous studies could be due to handling period, quality of the materials used for production and hygienic status of the processors and vendors.

The microbes tentatively identified from the zobo drinks sold in Yenagoa metropolis, Bayelsa state, Nigeria is presented in table 2. The bacteria isolates include *Escherichia coli*, *Staphylococcus aureus*, *Bacillus*, *Micrococcus*, *Enterobacter* and *Proteus* species, while the fungi isolates are *Aspergillus niger*, *Aspergillus flavus*, *Penicillium* and *Fusarium*.

<table>
<thead>
<tr>
<th>Microbes</th>
<th>Akenfa</th>
<th>Etegwe Junction</th>
<th>Agudama- Epie</th>
<th>Igbogene</th>
<th>Opolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bacillus species</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Enterobacter species</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Micrococcus species</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Proteus species</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium species</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2: Microbial characterization found in Zobo drink sold in Yenagoa metropolis, Nigeria.

+: Present; -: Absent (some of the microbes were only found in one of the three samples from each location).
The microbes identified from this study have some similarity with the findings of other authors on zobo drinks sold in different locations in Nigeria including Kano metropolis [21], Abia metropolis [9], Abakaliki [9], and Abia state [25].

Furthermore, the occurrence of coliforms (Enterobacter species and E.coli) may be from packaging materials, water used for processing and washing, handling etc [36]. Bacillus and Micrococcus may be from contaminant from the environment such as soil and processing equipment. Similarly, the presence Staphylococcus aureus may be associated with handling processes [36]. Staphylococcus aureus occurred in all the samples unlike other microbes isolated. This suggests that Staphylococcus aureus may have the highest occurrence rate in the samples in each of the location. The occurrence of the organisms could put potential consumers of the drink at risk of disease condition especially in immune compromised individuals. Some species of fungi could cause disease condition especially in immunocompromised patients as well. Some of this notable fungi species include Penicillium, Fusarium and Aspergillus species have the tendency to produce toxins that are harmful to human health [43].

Conclusion

In Nigeria, zobo is consumed by wide class of people. Its consumption has gain prominences and are sold in public places including school, hospital, work area, markets, streets etc. Zobo is prepared from the dried calyces of Hibiscus sabdariffa which belongs to malvaceae family. This study assessed the microbial population and isolates of Zobo sold in Yenagoa metropolis Bayelsa state, Nigeria. The study found that the microbial density is within various limits including Food and Agricultural Organization, Food Quality Check Programme limits and International Commission on Microbiological Specifications for Foods for ready to eat foods. Furthermore, the presence of coliforms (Enterobacter and E.coli) is an indication of contamination in the drink. This may have resulted from processing and handling processes and even processing ingredients i.e. spices, water, of Hibiscus sabdariffa, packaging containers etc. Hence, care should be put into consideration during processing, handling and storage since they are potential point through which microbes invade the drink.

Bibliography

Microbial Assessment of Zobo Drink Sold in Some Locations in Yenagoa Metropolis, Nigeria

42. “Food Quality Check Programme. Microbiological Recommendations, Food Laboratory, Environmental Microbiology BC Public Health Microbiology and Reference laboratory” (2011).

Volume 13 Issue 7 July 2018

©All rights reserved by Sylvester C Izah., et al.
