Deiodinases and Developmental Hypothyroidism

Ahmed RG*

Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

*Corresponding Author: Ahmed RG, Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

Received: September 14, 2017; Published: October 18, 2017

Thyroid hormones (THs) are crucial for normal organ development [1-30]. The levels of 3,5,3’-triiodothyronine (T3) in tissues is regulated by the action of the iodothyronine deiodinases (D1, DII, and DIII) [4,31-33]. In 2015b, I reported that any defects in fetal Ds may have more impact on fetal brain since they can result in intracellular T3 deficiency despite sufficient maternal TH supply. Also, my group [24] reported that hypothyroidism during the critical developmental period caused elevation in D2 activity in the diencephalon and mesencephalon, revealing of a compensatory response. This reflects that the compensatory action of Ds to changed TH level is not yet mature in young embryos or fetuses [32-34]. However, MMI treatment did not meaningfully change the activities of D1 or D3 in maternal liver and kidney. Thus, further studies are needed to elucidate the tissue-, cell-, and sex-specific expression of individual Ds during the development of both human and animals, in the adult, during aging and when sick.

Conflict of Interest
The author declares that no competing financial interests exist.

Bibliography
2. Ahmed RG. “Perinatal 2, 3, 7,8-tetrachlorodibenzo-p-dioxin exposure alters developmental neuroendocrine system”. Food and Chemical Toxicology 49.6 (2011): 1276-1284.

Deiodinases and Developmental Hypothyroidism


Deiodinases and Developmental Hypothyroidism


Volume 11 Issue 5 October 2017
©All rights reserved by Ahmed RG.

Citation: Ahmed RG. "Deiodinases and Developmental Hypothyroidism". EC Nutrition 11.5 (2017): 183-185.