Cognitive Recovery after Acquired Brain Injury - Neurocognitive Mechanisms and their Clinical Implications

Jesper Mogensen*

The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark

*Corresponding Author: Jesper Mogensen, The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.

Received: September 21, 2016; Published: September 27, 2016

Acquired brain injury (ABI) (of vascular origin or in the form of traumatic brain injury) almost always results in a certain level of sensory, motor or cognitive impairments. All such posttraumatic symptoms represent a significant burden on the patient as well as the family and friends of the patient. Additionally, the consequences of ABI are a major societal burden regarding healthcare, in the form of potential necessity of long-term nursing home housing etc. All types of ABI-associated impairments may represent severe burdens on the future life of the patient. Cognitive impairments, however, appear to have the greatest impact regarding such factors as quality of life, ability to return to independent living and potentially even return to work [1]. Fortunately, the posttraumatic cognitive symptoms will in most instances (especially if adequate cognitive rehabilitative training is administered) diminish significantly and the patient may even reach a level of “full recovery” - defined as a cognitive proficiency similar to what was seen pretraumatically [2-11].

Clinically, the potential of a pronounced cognitive recovery after ABI is encouraging and the administration of cognitive rehabilitative training should never be neglected. The relatively successful clinical results are, however, mostly achieved on a backdrop of missing conceptual frameworks and a lack of theoretical models. The theoretical as well as clinical need for improved conceptual clarifications and theoretical frameworks has been emphasized regarding recovery processes within both the motor [12] and cognitive [13,14] domains.

Frequently, a distinction is made between on the one hand the posttraumatic cognitive recovery associated with rehabilitative training and on the other hand what is termed “spontaneous recovery” [15]. Implicitly (and often explicitly) the spontaneous recovery is taken to be the result of experience-independent processes. A number of such “automatic” processes after ABI do exist. One example is the disappearance of an injury-associated “penumbra”. Penumbrae normally disappear spontaneously and such a disappearance can be associated with a return to normal functional performance within the part of the brain initially affected by the penumbra [16]. It should, however, be remembered that in parallel to such experience-independent processes, the initial posttraumatic period (when most of the “spontaneous” recovery is seen) is likely also to be a period of various kinds of “informal training”. Formal cognitive training may not occur during this period but the patient (dependent on her/his general condition) is likely to engage in for instance attempts to communicate, orientation towards the environment, attempts to recognise individuals etc. All such (more or less successful) cognitive activities and the associated informal feedback regarding the success or failure of such attempts represent an informal training that will contribute to the recovery process (see below regarding the importance of all aspects of post-ABI experiences).

Another distinction often made regarding both ABI and other neurological pathologies [17] is the one between recovery and compensation. The term recovery is sometimes (e.g. by the present author) used to indicate any reduction or disappearance of symptoms. But when contrasted with compensation, recovery is mainly taken to indicate a re-creation of what was originally lost to injury [12,18]. Levin, et al. [12] have emphasized the importance of clarifying at a number of levels of analysis the relative degree of compensation and recovery during motor rehabilitation after stroke. And a similar analysis is essential regarding cognitive rehabilitation after any type of ABI [19].

In order to address such issues in a meaningful way and in order to allow clinical efforts to be based on a more solid foundation - improved neurocognitive models of the processes mediating cognitive improvements after ABI are essential [19]. Traditional “modular” theories [20-22] are unable to account for the reduction and potentially even elimination of cognitive symptoms. Most connectionist models [23-26] are better equipped to explain such posttraumatic processes but fail to account for the well-documented functional localization in the uninjured brain. In contrast, the REF (Reorganization of Elementary Functions) Model [18,19,27-31] is able to account for both the functional localization and the rehabilitation-related processes. It does so by being based on connectionist networks but also having a “modular” aspect in the form of strictly localized (and never re-created) Elementary Functions (EFs). EFs are not the traditional cognitive functions but relatively low level information processing elements. Each EF typically contributes to several or even many cognitive domains. EFs are via experience mediated reorganization of the connectivity between the neural substrate of the EFs organized (and potentially re-organized) into the actual mechanism of the traditionally defined cognitive functions: The Algorithmic Strategies (ASs). During rehabilitative training after ABI, the EFs of the spared parts of the brain are re-organized into new ASs - ASs potentially able to allow cognitive processes of similar proficiency to what was seen pre-traumatically. As argued elsewhere [18] such mechanisms do not represent a re-creation of what was lost. But the clinical outcome may be a patient with different but as proficient mechanisms of cognition (compared to the pretraumatic situation). Thus, rehabilitation may be claimed to be “compensational”. But then compensation has to be seen as something different rather than something inferior. Conceptualizing the rehabilitative process in this way has a number of important clinical implications. Space only allows a couple of examples to be presented here.

Since cognitive rehabilitation after ABI is mediated by a reorganization of the spared regions of the brain rather than a re-creation of what has been lost, the most successful clinical procedures may not be the ones directly attempting to train what has been lost. A striking example can be found in the treatment of ABI associated hemispatial neglect. While little or no success is achieved directly training the impaired attentional processes the prism adaptation therapy (PAT) may have positive and lasting effects [32] in spite of not addressing attentional processes directly.

It is also important to realize that these reorganizational processes may sometimes to a surprising degree depend upon what may appear to be unimportant aspects of a training procedure. For instance, a computerized version of the PAT [33] only provided therapeutic results if the feedback to the patient was provided in the form of a virtual finger shown on the screen but not if similar feedback was given in the form of an “X” in the same screen-position. Such results emphasize the need for proper development and evaluation of computer-based rehabilitative methods [34] and an openness regarding what constitutes the crucial aspects of any rehabilitative procedure.

Further development of neurocognitive models of both the normal brain and the mechanisms of cognitive recovery after ABI is needed. And clinical practice also needs to implement the insights growing out of such theoretical and conceptual developments.

Bibliography

Cognitive Recovery after Acquired Brain Injury - Neurocognitive Mechanisms and their Clinical Implications


34. Wilms I and Mogensen J. "Dissimilar outcomes of apparently similar procedures as a challenge to clinical neurorehabilitation and basic research – when the same is not the same". NeuroRehabilitation 29.3 (2011): 221-227.

Volume 3 Issue 4 September 2016
© All rights reserved by Jesper Mogensen.