Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway

Pavel F Zabrodskii*
Saratov Medical University "REAVIZ", Saratov, Russia

*Corresponding Author: Pavel F Zabrodskii, Saratov Medical University "REAVIZ", Saratov, Russia.

Received: October 14, 2019; Published: November 13, 2019

Abstract

Literature data, as well as the results of our experimental studies (after the cholinergic anti-inflammatory mechanism we established in 1987) allow us to suppose, that n-cholinomimetic (α7nAChRs agonists, nicotine), acetylcholinesterase reversible inhibitor, adrenomimetics (β2ARs agonists) and M1-cholinomimetics, along with a range of therapeutic measures, in particular, with prescription of antibiotics, can be considered as promising agents for the treatment of sepsis and septic shock.

Keywords: Cholinergic Anti-Inflammatory Pathway; Sepsis; β2ARs Agonist; α7nAChR Agonist; Acetylcholinesterase Reversible Inhibitor; Proinflammatory Cytokines

Introduction

Septicaemia and septic shock are a major public health problem. Every year, around the world, it causes the death of more than a million people. Mortality from sepsis, depending on various factors, ranges from 12 to 60% of all deaths associated with diseases and their complications [1] and there is an increase in the number of cases of sepsis and the mortality rate from it [2]. Sepsis is a clinical syndrome with the development of life-threatening organ dysfunction caused by impaired regulation of response to infection. In septic shock, there is a critical reduction in tissue perfusion; many organs, including lungs, kidneys and liver, can also be severely affected. The most common causes in immunocompetent patients are various types of gram-positive and gram-negative bacteria. Atypical bacterial or fungal infections may be contributing factors in immunodeficient patients. Symptoms include fever, hypotension, oliguria and blurred consciousness. Diagnosis is based on clinical studies combined with bacteriological sowing results indicating the presence of infection; early detection and treatment are crucial. Aggressive infusion resuscitation, antibiotics, surgical removal of an infected area or necrotic tissue, drainage of purulent secretions and maintenance therapy are used as treatment [3-5].

The following principles of antibiotic therapy for sepsis are currently recommended (International Guidelines for Management of Sepsis and Septic Shock: 2016) [6,7].

Cholinergic stimulation, as we established in 1987 [8] and in subsequent studies, significantly reduces the mortality of albino mice from sepsis caused by intraperitoneal or intrapulmonary administration, respectively of E. coli and P. vulgaris [8-12]. Thus, the cholinergic anti-inflammatory mechanism has been discovered in 1987 [8], named “cholinergic anti-inflammatory pathway” in 2000 [13] after the research its implementation at the organismal, cellular and subcellular levels [9,10,13,14]. It should be noted that in 1995 it was proved

Citation: Pavel F Zabrodskii. "Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway". EC Microbiology 15.12 (2019): 01-04.
Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway

the possibility of cholinomimetics for emergency activation of antimicrobial resistance of the organism in sepsis [9,10]. In the future, the study of the cholinergic anti-inflammatory pathway caused by the action of acetylcholine on α7n-acetylcholine receptors (α7nAChRs) cells of the monocyte-macrophage system (MMC), followed by inhibition of the production by the cells of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and reduced mortality from sepsis were devoted hundreds of articles various authors [11-21]. Reduced production of TNF-α, IL-1β, IL-6 (anti-inflammatory effect occurrence) for cholinergic anti-inflammatory pathway is provided kinase JAK2, transcription factor STAT3, NF-κB transcription factor) [13,18-22].

We have established on outbred mice that that acetylcholine chloride in a dose of 20 mg/kg 6h after subcutaneous injection significantly reduces mortality of mice from sepsis induced by intraperitoneal injection of 2×10^9 CFUs diurnal culture of *E. coli* in 2.0 ml of saline and the blood levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 [18].

It was established in experiments on noninbred mice that activation of α7n acetylcholine receptors (α7nAChR) by anabasine in single doses of 1.0 and 5.0 mg/kg for 2h before modeling sepsis (intraperitoneal injection of 2×10^9 CFUs diurnal culture of *E. coli*) cause a significant dose-dependent reduction of mortality of mice due to a decrease in the amount of proinflammatory cytokines TNF-α, IL-1β and IL-6 in the blood [23]. The same action is taken by reversible inhibition of cholinesterase (proserine) and nicotine on mouse mortality and blood levels of proinflammatory cytokines during the early phase of sepsis [24]. Realization of the cholinergic anti-inflammatory pathway (stimulation of the peripheral nicotinic holinoreceptors (α7nAChR) and central muscarinic cholinoreceptors (mAChR) was modulated by stimulation of the mAChR of the phagocytic monocyte system cells [25]. The activation of α7nAChR with anabasine (0.5 LD50) and the use of antibodies to TNF-α (1 mg/kg) 2h before sepsis modeling significantly reduces mortality of mice from experimental sepsis due to a decrease in the blood concentration of TNF-α, IL-1β, and IL-6. After combined administration of anti-TNF-α antibodies and anabasine, an additive effect was observed [19]. The same influence caused the effect of M1 muscarinic acetylcholine receptor agonist (TBPB) and α7nAChRs agonist (GTS-21). Combined treatment with TBPB and GTS-21 determined their additive effect [21].

When the cholinergic anti-inflammatory pathway is realized, in addition to the excitation of α7nAChRs [11,14,26,27], which cause the effects already mentioned, nAChRs activation of the brain substance of the adrenal glands and sympathetic ganglia occurs, which leads to the production of epinephrine and norepinephrine (NE), which activation of MMS adrenergic receptors and reduce the production of pro-inflammatory cytokines [27]. At this n. vagus, releasing acetylcholine (ACh) in the celiac ganglion, causes excitation of the spleen nerve, the action of NE through its efferent fibers on T lymphocytes, the production of ACh by these lymphocytes, activation of ACh of α7nAChRs of MMS cells of the spleen [14,27]. Epinephrine and NE probably activating the adrenergic receptors of cells of the MMS (direct action) [27], β2-adrenergic receptors (β2ARs) of spleen T-lymphocytes (indirect effect) [15], cause the same effect as activation of α7nAChRs, leading to reduction in the synthesis of proinflammatory cytokines by cells of the MMS [14,16,20].

Experiments on random-bred albino mice showed that of β2-adrenoreceptor agonist hexaprenaline sulfate significantly reduced mortality of mice from experimental sepsis (intraperitoneal administration of *E. coli*) in 4 and 24 h after modeling by reducing blood levels of proinflammatory cytokines TNFα, IL-1β, and IL-6. The antagonist of β2AR ICI-118, 551 eliminated this effect [20]. The combined administration of NF-kB inhibitor (BAY 11-7082) and β2-adrenoreceptors agonist have an additive effect [22]. Thus, n-cholinomimetic (α7nAChRs agonists, nicotine), reversible inhibitor of acetylcholinesterase, adrenomimetics (β2ARs agonists) and M1-cholinomimetics, along with a range of therapeutic measures, in particular, with prescription of antibiotics, can be considered as promising agents for the treatment of sepsis and septic shock.

Bibliography

Citation: Pavel F Zabrodskii. “Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway”. *EC Microbiology* 15.12 (2019): 01-04.
Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway

Citation: Pavel F Zabrodskii. "Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway". EC Microbiology 15.12 (2019): 01-04.

Volume 15 Issue 12 December 2019

©All rights reserved by Pavel F Zabrodskii.

Citation: Pavel F Zabrodskii. "Prospective Methods of Sepsis Treatment by Activation of the Cholinergic Anti-Inflammatory Pathway". *EC Microbiology* 15.12 (2019): 01-04.