An Outbreak of Respiratory Infection in Horses due to Antibiotic Resistant Streptococcus equi subsp. Zooepidemicus in Greece

George Filioussis* and Emmanouel Karavanis

Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece

*Corresponding Author: George Filioussis, Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece.

Received: June 20, 2019; Published: August 22, 2019

Abstract

An outbreak of respiratory disease occurred in a herd of 57 horses in Greece in late November 2018. Clinical signs were adequate to respiratory infection. One horse at the age of 7 years that died due to pneumonia and one horse at the age of 9 years that had a ruptured submandibular abscess were sampled for bacteriological analysis by the lung and an abscess sample respectively. From the specimens S. zooepidemicus was isolated in pure culture. The S. zooepidemicus isolates showed resistance to trimethoprim-sulfamethoxazole, and tetracycline attributed to the carriage sulI, and tetO genes. Pneumonic disease was also confirmed by histopathological examination of lung specimens.

Keywords: S. zooepidemicus; Horse; Trimethoprim-Sulfamethoxazole; Tetracycline

Introduction

Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), is a beta-hemolytic Lancefield group C bacterium, that colonizes the oral cavity, the respiratory tract, and the reproductive tract of horses. Additionally S. zooepidemicus is also considered as an opportunistic pathogen in horses isolated from pneumonic infections as well as from strangles [1]. As implied by the specific name “zooepidemicus” this bacterium is not host-adapted, and the spread of resistant isolates represents a public health concern [2]. Based on the knowledge of its predicted susceptibilities, co-trimoxazole and tetracycline are broadly used against S. zooepidemicus infections [3]. The use of antimicrobials, however, may result in the selection of resistant microbial isolates. The clinical, laboratory and microscopic findings that are indicative of respiratory infection in horses caused by S. zooepidemicus resistant to trimethoprim and sulfamethoxazole and tetracycline are reported in the current study.

Clinical history

An outbreak of respiratory disease occurred in a herd of 57 horses kept inside barns in Edessa region (North West Greece) in late November 2018 and lasted approximately five weeks. Clinical signs were: Decrease in appetite, elevated temperature (38.5 - 39.5°C), serous nasal discharge, lymphadenopathy in the neck region and cough. One horse died due to pneumonia at the age of 7 years along with another 9-years-old horse which had a ruptured submandibular abscess, were sampled for bacteriological analysis by the lung and an abscess sample respectively. The samples were refrigerated and transferred in insulated boxes containing coolants to the laboratory of microbiology and infectious diseases located at the Faculty of Veterinary Medicine of Aristotle University, Thessaloniki within 4 h of collection.

Microbiological examination

Upon arrival to the laboratory, the samples were cultured onto Columbia Agar with Sheep Blood Plus (CASBP, Oxoid Deutschland GmbH, and Wesel, Germany) and incubated at 37°C. After 48 h of incubation, plates were examined for microbial growth. Ten b-hemolytic colonies, 5 per cultured sample, were selected for the following analysis: species identification with polymerase chain reaction (PCR) [4] and antimicrobial susceptibility testing via a disk diffusion method [5]. Furthermore, the total DNA of the selected isolates, was analyzed by PCR for the presence of sulI-II and -III [6] and and tetA-B-C and -O resistance genes [7]. The resultant PCR amplicons were sequenced on a genetic analyzer (ABI PRISMH 3100, Applied Biosystems, Foster City, CA) by using Rhodamine-labeled terminators.

Histological examination

Specimens of the lung were fixed in 10% neutral buffered formalin, embedded in paraffin wax, and cut in 5-µm-thick sections for subsequent hematoxylin and eosin staining [8].

Results

Microbiology

After 48 hr of incubation, mucoid colonies with a wide zone of b-hemolysis were obtained in pure culture from the cultured specimens. Ten bacterial isolates (5 per cultures sample), randomly selected from the incubated plates were identified as *S. zooepidemicus* by PCR. Additionally, the isolates showed resistance to trimethoprim-sulfamethoxazole, and tetracycline while they were found sensitive to levofloxacin, vancomycin, erythromycin, clindamycin, linezolid, and chloramphenicol. Finally, all isolates were found to carry sulI, and tetO genes, which encode resistance to co-trimoxazole, and tetracycline, respectively.

Histology

Histological examination of hematoxylin and eosin-stained sections revealed generalized, severe, chronic, broncho-interstitial pneumonia (Figure 1). Alveolar septa were expanded up to 10 times normal by a cellular infiltrate composed of macrophages, neutrophils and lymphocytes, with increased amounts of smooth muscle. Multifocally, there was a severe peribronchiolar and perivascular fibrosis and severe hypertrophy of the vascular wall.

Figure 1: Histological examination of hematoxylin and eosin-stained sections of lung.

*Alveolar septa expanded up to 10 times normal by a cellular infiltrate composed of macrophages, neutrophils and lymphocytes, with increased amounts of smooth muscle (black arrows). Multifocally, there is severe peribronchiolar and perivascular fibrosis and severe hypertrophy of the vascular wall (red arrow).*

An Outbreak of Respiratory Infection in Horses due to Antibiotic Resistant *Streptococcus equi* subsp. *Zooepidemicus* in Greece

**Citation:** George Filioussis and Emmanouel Karavanis. "An Outbreak of Respiratory Infection in Horses due to Antibiotic Resistant *Streptococcus equi* subsp. *Zooepidemicus* in Greece". *EC Microbiology* 15.8 (2019): 866-869.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>EUCAST breakpoint (mm)</th>
<th>Isolate.1 Zone (mm)</th>
<th>Isolate.2 Zone (mm)</th>
<th>Isolate.3 Zone (mm)</th>
<th>Isolate.4 Zone (mm)</th>
<th>Isolate.5 Zone (mm)</th>
<th>Isolate.6 Zone (mm)</th>
<th>Isolate.7 Zone (mm)</th>
<th>Isolate.8 Zone (mm)</th>
<th>Isolate.9 Zone (mm)</th>
<th>Isolate.10 Zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>15</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>17</td>
<td>22</td>
<td>23</td>
<td>26</td>
<td>21</td>
<td>28</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>13</td>
<td>28</td>
<td>28</td>
<td>24</td>
<td>32</td>
<td>26</td>
<td>28</td>
<td>28</td>
<td>32</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>29</td>
<td>33</td>
<td>27</td>
<td>21</td>
<td>32</td>
<td>27</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>17</td>
<td>32</td>
<td>26</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>28</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Linezolid</td>
<td>16</td>
<td>33</td>
<td>32</td>
<td>28</td>
<td>26</td>
<td>34</td>
<td>29</td>
<td>31</td>
<td>34</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>19</td>
<td>28</td>
<td>27</td>
<td>22</td>
<td>29</td>
<td>26</td>
<td>27</td>
<td>29</td>
<td>26</td>
<td>28</td>
<td>25</td>
</tr>
</tbody>
</table>

**Table:** Antibiotic resistance raw data.

Zone diameters lower than the breakpoint are marked in red.

**Discussion**

The importance of *S. zooepidemicus* in veterinary specimens is not easy to determine because it is difficult to distinguish colonization from primary infection. A recent study established that the isolation of Streptococci from submandibular abscesses is an important finding [9]. The associated infection is mainly based on the elaboration of exposed surface proteins such as SzPSe, the hyaluronic acid capsule, the antiphagocytic SeM protein, and Mac protein [10]. In contrast, in a later report [11], *S. zooepidemicus* was isolated from mucus membranes of healthy horses. According to results from the present study, *S. zooepidemicus* was the causal agent of the respiratory infections in the examined horses and not a contaminant of the respiratory tract. This statement is supported in 2 ways. First, the clinical examination indicated that the animals were suffering from pneumonic disease, as observed by the clinical signs. Second, the results of microbiologic and histopathologic examination confirmed that the pneumonic disease was associated with *S. zooepidemicus* in pure culture. The generalized, severe, chronic, broncho-interstitial pneumonia was undoubtedly the result of the bacterial infection.

In the present outbreak, it is possible that a single strain of *S. zooepidemicus* appeared to have selective pathogenic potential. This is supported by the identical results of the antibiotic sensitivity test and the resistome analysis that the examined isolates shared. Our study is limited to the point that no investigation for the presence of superantigen genes of *S. zooepidemicus* that is associated to respiratory infections were performed [12]. Although our results indicate a pathogenic potential of the strain of *S. zooepidemicus*, more studies are needed to identify the mechanisms that influence the infection of the respiratory track of the horses.

The global emergence of multiple antibiotic-resistant isolates of *S. zooepidemicus* has been previously reported [13,14]. In the current study, the *S. zooepidemicus* isolates showed resistance to trimethoprim-sulfamethoxazole, and tetracycline attributed to the presence of sulI, and tetO genes, respectively. Because co-trimoxazole, and tetracycline are recommended for the treatment of pneumonic infections in horses resistance, patterns of the type found in the current study are significant in terms of therapy [9]. Moreover, zoonotic transmission of *S. zooepidemicus* through contact with horses is well documented [15]. In respect to this statement the presence of antibiotic resistance of *S. zooepidemicus* clones can be considered as an important issue for public health.
Conclusion

In conclusion antibiotic resistant strains of S. zooepidemicus should be considered as potential etiologic agents of pneumonic infection in horses in Greece. Early investigation is important to avoid serious complications and it could be life saving.

Bibliography


Volume 15 Issue 8 August 2019
©All rights reserved by George Filioussis and Emmanouel Karavanis.