Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes

Drasko D Pekovic*, Hassane Kacimi and Zana Zarkovic

Head of Environmental Laboratory of the Institute of BioMedical Research, Canada

*Corresponding Author: Drasko D Pekovic, Head of Environmental Laboratory of the Institute of BioMedical Research, (Quebec) Canada.

Received: September 18, 2015; Published: November 13, 2015

Abstract

Recently, a new generation of mouthwash, called “OralNet”, became commercially available in the province of Quebec, Canada. According to the technical specifications, OralNet is based on ultrapure Arctic Ocean water supplemented with colloidal silver.

In the present study the Microbicidal efficacy, toxicity, endogenous pH and physicochemical content of OralNet have been evaluated in comparison with the following standard over-the-counter (OTC) mouthwashes: Biotene with Calcium, Colgate-Peroxyl, Life-Citrus, Listerine Anti-Tartar, Listerine Original, Scope-Mint and Tetrabreath.

The obtained results show that OralNet displayed the highest microbicidal activities in vitro exceeding 99.9% after 30 seconds of contact with test organisms and the lowest toxicity in vitro (3.69%), as compared to the standard mouthwashes studied. In addition, OralNet has a well balanced endogenous pH (7.3), as well as a simple chemical structure composed of two natural active ingredients.

The standard mouthwashes are also characterized by relatively high in vitro microbicidal activities, higher toxicity levels than OralNet, and more complex chemical structures, involving up to 18 components. Five of the seven displayed low endogenous pH, below the critical value for tooth structure dissolution (pH < 5.5). Contrarily, Tetrabreath displayed a high alkaline level (pH 9.52).

The present study shows microbicidal and biocompatibility superiority of OralNet, over all other mouthwashes studied. In addition, OralNet is a natural compound with a simple structure compared to the other products, which are composed of numerous chemical ingredients with potential side effects.

Keywords: Mouth wash; Oral hygiene; Ocean water; Colloidal silver

Abbreviations: CFU: Colony Forming Unit; OTC: Over-The-Counter;

Introduction

Mouthwashes are solutions used for rinsing the mouth, to remove or destroy oral bacteria, to act as an astringent, to deodorize and to have a therapeutic effect by preventing or relieving oral diseases, mainly dental caries, gingivitis and periodontitis. However, these relative therapeutic benefits are not clearly defined [1].

The earliest report on mouthwash use, as a formal treatment of oral health conditions, is attributed to Chinese medicine in approximately 2700 B.C. when mouth rinsing was recommended with the urine of a child. This practice spread across many ancient civilizations and persisted until the early 1700s. In the latter half of the 18th century, Miller advanced the knowledge on oral rinsing by distinguishing between their bacteriostatic and bactericidal effects [2]. The modern era of mouthwashes was introduced by the release of Listerine as an OTC remedy for bad breath in 1914 [3]. Since then oral antiseptic and germicidal claims for mouthwashes have been abundant. However, few of these claims had supportive clinical data, and those that did were in the form of in-vitro testing [2].

Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes

Current knowledge in dental medicine states that maintaining good oral hygiene is a preventive measure for a variety of oral diseases, as well as for health conditions in general [4]. Tooth brushing alone is the most common way of maintaining oral health by removing as much as 65% to 75% of the total plaque [5].

Since this mechanical method of plaque control remains insufficient to prevent oral diseases chemical agents may add relevant benefits when used in addition to tooth brushing and flossing. For this reason antibacterial agents are widely used in a variety of mouthwash preparations [6].

Many scientific reports show that the use of antiseptic mouthwash significantly decreases the total number of oral bacteria for up to 2 hours after rinsing [7-10].

Although mouthwashes have demonstrated the ability to inhibit the formation of dental plaque, data about their side effects, such as unpleasant taste, oral mucosa ulceration, toxicity and genotoxicity, mouth irritation and drying, tooth staining and other oral complications are emerging slowly [11-18].

Recently, a new generation of mouthwash, called OralNet, has become commercially available in the Canadian province of Quebec. As declared by the manufacturer, OralNet is composed of two active ingredients: ultra pure water from the Arctic Ocean and colloidal silver.

The ocean water is known as the richest, most complete natural source of minerals and metals [19]. It is recognized for its nutritional qualities, oxygenation of somatic cells, stimulation of blood circulation, and restoration of tonicity and dynamism to the tissues [19,20]. Ocean water is also known as a powerful antibiotic. It kills many kinds of microbes and prevents their proliferation [21-23].

It is important to point out that the beneficial action of the salted solutions in stomatologic practice has been appreciated for a long time. The oral crenotherapy finds in natural ocean water a preferential field of application, without iatrogenic risks [20].

OralNet is also supplemented with colloidal silver, recognized for its general anti-microbial effect, without known resistance, which has been used therapeutically since the old civilizations. Colloidal silver releases silver ions which penetrate into the cellular walls of the microbes and disable the enzymes that all bacteria and fungi use for their oxygen metabolism, resulting in death of the cells [24-26].

This paper describes a comparative study of a new generation mouthwash, OralNet, with 7 other OTC mouthwashes on the basis of the following studies:

a. Evaluation in vitro of antimicrobial effectiveness,

b. Determination in vitro of toxicity,

c. Measuring of endogenous pH, and

d. Comparison of the physiochemical content by compiling the ingredients presented on the product labels.

Material and Methods

Mouthwashes

For the present study, all 8 brands of OTC mouthwashes (Illustrated by Figure 1), containing various ingredients, have been obtained from local commercial sources in Montreal, Canada. Table 1 shows their trade name, in alphabetical order; the name of producer; lot number; expiration date and code used during testing for blinding purposes.

At the beginning of the study all mouthwashes were assigned a code and then all testing was carried out on coded samples.

All mouthwashes were analyzed for:

a. Bactericidal activity *in vitro* against salivary flora of healthy individuals [27].

b. Toxicity *in vitro* by Toxi-Chromotest [28].

c. Endogenous pH [29,30]

d. Content of ingredients, according to the declarations of each respective manufacturer.

Bactericidal activity

Saliva collection

The anti-bacterial activity of the mouthwashes was assessed on salivary flora. Whole saliva was collected from 5 healthy adult subjects who were asked first to brush teeth and rinse the mouth with 40 ml of water for 15 seconds. Following oral hygiene measures, saliva was collected. Spitting method was employed into a 20 ml sterile specimen bottle for 5 minutes [31,32].

Citation: Drasko D Pekovic., *et al.* "Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes". *EC Microbiology* 2.3 (2015): 317-327.
Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes

Evaluation of microbial load

The individual whole saliva samples were mixed with PBS (1:1 v/v) for 2 min sonication. Sonicated saliva was then serially diluted in 10-fold dilutions in PBS, and aliquots plated on 5% sheep blood agar. Plates were incubated under aerobic conditions at 35ºC, with the number of colony forming units (CFU) reported for each dilution. The bacterial test suspension was prepared and adjusted at 5.1 x 10⁶ CFU/ml and used for in vitro testing in this study [33].

Determination of bactericidal activity

The anti-bacterial effects of all mouthwash samples have been analyzed according to a standard protocol [27,34].

The cell suspension of human saliva, containing 5.1 x 10⁶ CFU/ml was used for this purpose. One ml of the cell suspension was inoculated in 30 ml of each mouthwash sample. The antibacterial effectiveness was determined by the number of CFU/ml, of the test suspension after 30s, 1 and 5 min of contact with tested mouthwashes and compared to the number of CFU/ml of the bacterial control suspension. After each contact time, 10 ml was taken from each mouthwash test suspension. Microbes were removed by membrane filtration and harvested cells resuspended and cultured as previously described [35,36].

Determination of toxicity

The toxicity level of each mouthwash was determined by EBPI Toxi-Chromotest (Brampton, Ontario) [28,37]. Briefly, Toxi-Chromotest is a rapid bacterial-based colorimetric bioassay generally used for determination of toxicity of a broad spectrum of liquid and solid toxic substances. The assay determines the ability of substances (toxicants) to inhibit the de novo synthesis of an inducible enzyme β-galactosidase in a highly permeable mutant of Escherichia coli.

The procedure exposes the bacteria to the test sample for a short incubation period after which a chromogenic substance is added. If the sample is toxic, no color will develop but if the sample is not toxic a distinctive blue color quickly develops. The test provides a clear, completely objective measurement of the toxicity of the sample by a simple visual appreciation of the color obtained or by spectrophotometry using a micro-plate-reader.

In the present study a DMS 300 spectrophotometer (Varian) was used at 615 nm, for evaluation of enzyme activity.

Toxi-Chromotest includes control standards: Mercury chloride (Hg Cl₂) was used as the positive control, displaying a standard toxicity of 95%, and distilled water (H₂O) was used as the negative control having toxicity value of 0%.

Toxicity of the tested samples was calculated using the following equation:

\[
\text{% Toxicity} = \left[0.1 - \frac{\text{OD treated cells}}{\text{OD control cells}}\right] \times 100
\]

Measuring of endogenous pH values

The pH is an important parameter in oral microbiological ecology. The endogenous pH of each mouthwash was measured at room temperature immediately after the package was opened, using a digital pH meter (Hanna Instruments, USA) [29,30].

Evaluation of the content of the mouthwashes

The content of each mouthwash sample was evaluated on the basis of ingredients declared on the product label. No specific analyses were carried out on any of the mouthwashes studied.

Results

Bactericidal activity

The results of the comparative studies of antimicrobial effectiveness of OralNet and seven other OTC available mouthwashes are reported in Table 2 and Figure 2.

Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes

Results of this study show that mouthwash solutions displayed variable antibacterial activity depending on their chemical composition. However, only OralNet killed 99.9% of test bacteria after 30 seconds of contact. Biotine with Calcium, Colgate Peroxyl, Life-Citrus, Scope-Mint and Tetrabreath destroyed 99.9% of the test bacteria after 1 min of contact. All studied mouthwashes achieved killing of 99.9% of tested bacteria following 5 min of contact.

<table>
<thead>
<tr>
<th>Mouth Washes</th>
<th>Initial Concentration (*CFU/ml) 0 min</th>
<th>Results: % of microbial killings after contact times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30s</td>
</tr>
<tr>
<td>PBS (control)</td>
<td>1.7×10^5</td>
<td>0.2</td>
</tr>
<tr>
<td>Biotene with Calcium</td>
<td></td>
<td>97.6</td>
</tr>
<tr>
<td>Colgate-Peroxyl</td>
<td></td>
<td>94.1</td>
</tr>
<tr>
<td>Life-Citrus</td>
<td></td>
<td>95.4</td>
</tr>
<tr>
<td>Listerine Anti-Tartar</td>
<td>1.7×10^5</td>
<td>93.9</td>
</tr>
<tr>
<td>Listerine Original</td>
<td></td>
<td>93.9</td>
</tr>
<tr>
<td>Scope-Mint</td>
<td></td>
<td>98.6</td>
</tr>
<tr>
<td>Tetrabreath</td>
<td></td>
<td>96.4</td>
</tr>
<tr>
<td>Oralnet</td>
<td>1.7×10^5</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Table 2: Results of comparative studies of antimicrobial effectiveness.
*CFU = Colony Forming Unit

Figure 2: Microbicidal activities of tested mouthwashes.

Toxicity

The toxicity levels of tested mouthwashes are specified in Table 3.

The positive (HgCl$_2$) and negative controls (H$_2$O) gave values according to the specification of test-kit manufacturer [37]. All toxicity levels were low with a range from 3.6% to 5.1% with OralNet the lowest and Life Citrus the highest.

Endogenous pH measurement
Endogenous pH values are specified in Table 3.

OralNet showed a neutral pH value of 7.30, Colgate Peroxyl, Life Citrus, Listerine Anti-Tartar and Scope Smooth Mint displayed low endogenous pH, even below the critical value (pH 5.5) for tooth structure dissolution [29,30]. Contrarily, Tetrabreath showed a very high alkaline endogenous pH of 9.52.

<table>
<thead>
<tr>
<th>Tested samples</th>
<th>% of Toxicity*</th>
<th>Endogenous pH</th>
<th>Total Number of ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotene with Calcium</td>
<td>4.92</td>
<td>6.80</td>
<td>13</td>
</tr>
<tr>
<td>Colgate-Peroxyl</td>
<td>3.84</td>
<td>4.17</td>
<td>9</td>
</tr>
<tr>
<td>Life-Citrus</td>
<td>5.10</td>
<td>4.23</td>
<td>18</td>
</tr>
<tr>
<td>Listerine Anti-Tartar</td>
<td>4.52</td>
<td>4.09</td>
<td>11</td>
</tr>
<tr>
<td>Listerine Original</td>
<td>4.56</td>
<td>4.36</td>
<td>10</td>
</tr>
<tr>
<td>OralNet</td>
<td>3.69</td>
<td>7.30</td>
<td>5</td>
</tr>
<tr>
<td>Scope-Mint</td>
<td>4.60</td>
<td>5.43</td>
<td>12</td>
</tr>
<tr>
<td>Tetrabreath</td>
<td>4.88</td>
<td>9.52</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 3: Toxicity, endogenous pH and total number of ingredients.
Test technical specification values:
% of Toxicity of distilled water (negative control) < 0.1.
% of Toxicity of Mercury chloride (positive control) = 95.0.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Biotene with calcium</th>
<th>Colgate Peroxyl</th>
<th>Life Citrus</th>
<th>Listerine Anti-Tartar</th>
<th>Listerine Original</th>
<th>Scope Classic</th>
<th>Tetrabreath</th>
<th>OralNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Brilliant F.C.F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caramel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Calcium lactate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cetylpyridinium chloride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Citric acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Colloidal silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Dissodium phosphate</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domiphen bromure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptol</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.D. & C. Red No.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.D. & C. Green No. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.D. & C. Yellow No.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavor</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Table 4: Structural content of mouthwashes as declared by their manufacturers.

| Ingredient | Glucose oxydase | Glycerine | Hydrogenated Castor Oil | Hydrogen peroxide | Hydroxyethyl cellulose | Lactoferine | Lactoperoxydase | Lysozyme | Mentha piperita oil | Menthol | Methil paraben | Methyl salicylate | Ocean water | PEG-40 | Poloxamer 338 | Poloxamer 407 | Polysorbate 20 | Polysorbate 80 | Propanol | Propyleneglycol | Propylparaben | Sodium benzoate | Sodium bicarbonate | Sodium citrate | Sodium chloride | Sodium hydroxide | Sodium phosphate | Sodium saccharine | Sorbitol | Sucralose | Tetrasodium EDTA | Thymol | Water | Xylitol | Yellow 5 | Zinc chlorure | Zinc gluconate | Total number of ingredients |
|-----------------------------------|-----------------|-----------|------------------------|-------------------|-----------------------|--------------|-----------------|-----------|-------------------|---------|---------------|----------------|-------------|--------|---------------|----------------|----------------|----------------|----------|-------------|----------------|----------------|----------------|---------------- |------------------|
| Glucose oxydase | | | | | | | | | | | | | | | | | | | | | | | | | 13 |
| Glycerine | x | | | | | | | | | | | | | | | | | | | | | | | | 9 |
| Hydrogenated Castor Oil | | | | | | | | | | | | | | | | | | | | | | | | | 18 |
| Hydrogen peroxide | | | | | | | | | | | | | | | | | | | | | | | | | 11 |
| Hydroxyethyl cellulose | | | | | | | | | | | | | | | | | | | | | | | | | 10 |
| Lactoferine | | | | | | | | | | | | | | | | | | | | | | | | | 12 |
| Lactoperoxydase | | | | | | | | | | | | | | | | | | | | | | | | | 9 |
| Lysozyme | | | | | | | | | | | | | | | | | | | | | | | | | 5 |

Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash "Oralnet" with Common Mouthwashes

These comparative studies have shown that the commercially available standard mouthwashes are complex in their structure and contain up to 18 chemical ingredients. OralNet mouthwash displayed a simple structure containing no chemical considered potentially harmful for human health.

Discussion

Despite almost ubiquitous use of toothbrushes with fluorinated toothpaste, and tooth flossing, epidemiological data indicates that these methods do not achieve their theoretical potential for controlling plaque formation and preventing oral diseases [5].

As it is impossible to eliminate all oral flora, which is composed of almost 500 types of microorganisms, it is important to achieve plaque control by limiting growth of harmful bacteria causing oral infections [3,38].

This situation provided the impetus for the use of antimicrobial mouthwashes, which are reported to be favored by the public due to their ease of use and breath freshening effect, with the aim of better controlling dental plaque and gingivitis [39-42]. Current statistics indicate that almost 50% of the population uses mouthwash; however half of these rinses are not therapeutic preparations [43].

Mouthwashes are typically used as adjunctive to tooth brushing regimens. They encompass antimicrobial activity that ensures elimination of harmful oral bacteria, which aids in preventing dental caries, gingivitis and periodontitis. However, almost all of these preventive effects have been studied in vitro or in animal models [43].

When selecting the appropriate mouthwash, in addition to its antimicrobial effect, its biocompatibility has also to be given due consideration [44]. Mouthwashes are complex mixtures and can include various types of antimicrobials, such as alcohol, metal ions, essential oil, chlorhexidine, quaternary ammonium compounds and many other chemicals. Few of these mouthwashes, however, have undergone rigorous testing, as evidenced by the limited information on their safety and clinical efficacy [45-47].

An increasing number of scientific publications indicate occurrence of numerous side effects associated with the use of mouthwashes. With this perspective it is important to point out that almost all mouthwashes contain microbiocidal active ingredients which are generally recognized, more or less, as toxic substances.

The use of mouthwashes with high ethanol content, as a microbiocidal agent has frequently been linked to an increased risk of oral mucosal irritation and ulceration [16,17]. The ethanol concentration of numerous commercially available mouthwashes is situated between 5 and 27% [3]. The regular use of mouthwashes with high alcohol content may contribute to oral cancer risk. A causal interpretation seems biologically plausible because drinking alcoholic beverages has been associated with oral cancer [48-50].

It is likely that in addition to ethanol various other constituents of mouthwashes are candidates to interact, for example, with plasma membrane oral squamous cells and to cause irritation [18]. Other types of irritants, e.g. terpenes, terpenoids and surfactants are additionally presents in many mouthwashes as effective ingredients [3].

Many brands of mouthwashes contain chlorhexidine as an active ingredient. It has been shown that long-term use of chlorhexidine-containing mouthwashes can cause local calculus formation, staining of teeth and delayed mouth healing [11-14]. In addition, it has been shown that chlorhexidine is highly cytotoxic in vitro and that more caution has to be applied when using this antiseptic in oral surgery procedures [15].

Numerous OTC mouthwashes contain a significant number of chemicals, as declared in the product labels. However, the toxicity of these ingredients remains scientifically poorly documented.

The literature review claims that mouthwashes are often evaluated by in-vitro tests on lab animals. The tests give inadequate understanding of the side effects of this toxicity, for the short or long term, to the oral or general health of the users.

The administration of antimicrobials to the mouth may result in some, or even all, of the administered dose being swallowed. Therefore, it is appropriate to consider the possibilities of gastric irritation and/or systemic toxicity.

Increasing numbers of studies indicate that pH is an important physico-chemical condition in oral ecology, and that the endogenous pH value is an important property of mouthwashes. The measurement of the pH is a practical method to assess the erosive potential of a mouthwash [29,30]. Low pH mouthwashes (≤ 5.5) can cause dental demineralization, erosion, and significant loss of enamel within the first few minutes of contact. Although pH values ≤ 5.5 are considered critical for enamel dissolution, mineral loss may begin even at a higher pH i.e. 6. Therefore, the prolonged use of mouthwashes with pH < 5.5 may be potentially harmful to dental structure [29].

The low pH of oral care products increases the chemical stability of some fluoride compounds and favors the incorporation of fluoride ions into the lattice of hydroxyapatite and the precipitation of calcium fluoride onto the tooth surface. Based on this statement, product labels were examined to identify mouthwashes containing fluoride. Among the six with a pH < 5.5, three mouthwashes contain fluoride (0.05% NaF). The label of the other three mouthwashes with pH below the critical value for enamel dissolution did not list fluoride in their ingredients.

The aim of this study was to determine the antimicrobial properties, toxicity levels, endogenous pH, and the content of ingredients of seven commercially available mouthwashes as compared to OralNet, a new generation mouthwash.

Of the eight mouthwashes tested, OralNet emerged as the most effective with 99.9% microbial killing after 30 seconds of contact time in experimental saliva-bacterial suspension. OralNet has also shown the lowest toxicity level as evaluated by Toxi-Chromotest, neutral pH value for better prevention of mineral dissolution from the teeth, as well as the simplest structure in number of ingredients and its natural content.

Results of this in vitro study cannot be directly extrapolated to the clinical situation. However, obtained results indicate significant differences in test-microbes killing and pH level among the mouthwashes studied.

There is clearly a great need for more in vivo studies to understand the possible microbial and toxicity effects of mouthwashes in order to balance formulations more efficiently for benefits provided by them.

Conclusion
OralNet, a new generation of mouthwash has shown better qualities, as compared to conventional mouthwashes by:

1. Rapid killing of oral flora,
2. Maintaining physiological conditions of oral tissues,
3. The lowest toxicity level,
4. Neutral pH, and
5. The simplest structure composed of two natural active ingredients

Bibliography

Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes

18. Eau de mer

Comparative Study of Antimicrobial, Toxicity and Physicochemical Properties of the New Generation Mouthwash “Oralnet” with Common Mouthwashes

Volume 2 Issue 3 November 2015
© All rights are reserved by Drasko D Pekovic., et al.