Shear Bond Strength of Hybrid Orthodontic Brackets

Sabrina Duarte Jobin¹ and Julio Pedra e Cal-Neto²*

¹Private Practice, Juiz de Fora, MG, Brazil
²Orthodontics, Fluminense Federal University - UFF, Nova Friburgo, Rj, Brazil

*Corresponding Author: Julio Pedra e Cal-Neto, Orthodontics, Fluminense Federal University - UFF, Nova Friburgo, Rj, Brazil.

Received: November 29, 2019; Published: January 07, 2020

Abstract

Aim: The aim of this study was to evaluate the shear bond strength of hybrid orthodontic brackets, composed of a polymeric base and a metallic body, attached to human teeth.

Materials and Methods: Forty extracted human premolars were obtained and divided into two groups of 20 each: group 1 (control), metallic bracket NU-Edge (TP Orthodontics), and group 2, NV Hybrid (TP Orthodontics). After acid etching all brackets were direct bonded with application of Orthoprimer (Morelli Orthodontic Products) and Orthobond adhesive paste (Morelli Orthodontic Products) in both groups. All products were used according to the manufacturer’s instructions. A universal testing machine was used to apply an occlusal shear force directly onto the enamel-bracket interface at a speed of 1.0 mm/min. Groups were compared using Student’s t test.

Results: Mean results and standard deviations for the groups were: group 1 = 4.85 Mpa (2.46), group 2 = 10.24 Mpa (4.66). A significant difference was observed in the bond strengths of the two groups evaluated (P < .0001).

Conclusion: The use of hybrid brackets with a polymeric base has resulted in higher adhesion strength values if compared to the conventional metallic brackets.

Keywords: Acid Etching; Bonding; Brackets; Orthodontics; Shear-Bond Strength

Introduction

In modern society the esthetic aspect of the orthodontic therapy is important because the number of adults that undergo orthodontic therapy is increasing [1]. The development of appliances that combine both acceptable esthetics and adequate technical performance is an important goal. Plastic brackets made of polycarbonate and plastic molding powder were first introduced by Newman [2,3]. The use of plastic brackets was limited because of their poor physical properties, resulting in problems such as fracture, stain, and distortion of the brackets. Lower bond strengths were also noted [4,5].

Recently, brackets composed of a polymeric base and a metallic body were presented. These hybrid brackets were developed to improve esthetics during orthodontic treatment, with a continuous effort to overcome several problems of some ceramic and/or plastic brackets: brittleness leading to bracket or tie-wing failure, iatrogenic enamel damage during debonding, enamel wear of opposing teeth, and high frictional resistance to sliding mechanics [6,7].
**Purpose of the Study**

The purpose of this study was to determine the shear bond strength of hybrid orthodontic brackets bonded to enamel. The null hypothesis was that there would be no difference in the shear bond strength between groups whether a metallic or a hybrid bracket was used.

**Materials and Methods**

**Sample**

A total of 40 human premolars free from caries, cracks, and fillings were used. These teeth had been extracted for orthodontic reasons and with the informed consent of the patients. The teeth were collected and stored in distilled water at room temperature. The teeth were cleansed of soft tissue and mounted in plastic rings with acrylic resin. The crowns were oriented so that the labial enamel surface would be parallel to the force during the shear strength test.

**Bonding procedure**

The teeth were divided into 2 groups, and brackets were bonded on the buccal surfaces according to the manufacture’s instructions. Group I (Control): Metallic brackets NU–Edge (TP Orthodontics) and Group II: Hybrid brackets NV-Hybrid (TP Orthodontics). The average bracket base surface area was determined to be 11.87 mm² in the group I, and 12.24 mm² in the group II.

The buccal enamel surface of each tooth was dried and etched with 37% phosphoric acid during 15 seconds. The specimens were then rinsed with distilled water for 10 seconds and dried with oil-free air. In all cases, the frosty white appearance of etched enamel was noticed.

A layer of primer (Orthoprimer, Morelli Orthodontic Products, São Paulo, Brazil) was applied on the tooth. All brackets were bonded with Orthobond adhesive paste (Morelli Orthodontic Products). Firm pressure was used to completely seat the bracket on the tooth, and excess resin removed with a small dental probe. Each bracket was light-cured for 20 seconds with Radii LED Plus (Southern Dental Industries, Victoria, Australia). The light source was placed on the mesial side of the bracket/tooth interface for half the total cure time and on the distal side for the remaining time. The power densities were checked by a handheld radiometer (Demetron 100, Demetron Research, Danbury, Connecticut, USA) to ensure that they were operating properly after each bracket was bonded and to certify the manufacturers’ data.

**Testing procedure**

The bracket-tooth interface for each specimen was tested after 30 minutes in shear with a sharp, chisel-shaped rod attached to a universal testing machine (DL 500, EMIC, Paraná, Brazil) at a crosshead speed of 1.0 mm/minute until bracket failure. The force in newtons (N) was recorded for each specimen and divided by the surface area of the bracket pad to obtain the shear stress value in megapascals (Mpa).

After debonding, the teeth and brackets were examined under 10x magnification (Olympus Optical, Hamburg, Germany) to evaluate the amount of resin remaining on the tooth. The adhesive remnant index (ARI) was used to describe the quantity of resin remaining on the tooth surfaces. The ARI score has a range between 0 and 3 as follows: 0, indicates that no composite remained on the enamel; 1, less than 50% of composite remained on the tooth surface; 2, more than 50% of the composite remained on the tooth; 2, 100% of the composite remained; and 3, all of the composite, as well as the impression of the bracket base, remained on the tooth [8].

**Citation:** Sabrina Duarte Jobin and Julio Pedra e Cal-Neto. “Shear Bond Strength of Hybrid Orthodontic Brackets”. *EC Dental Science* 19.2 (2020): 01-05.
Statistical analysis

Descriptive statistics, including the mean, standard deviation, and minimum and maximum values, were calculated for each group tested. The data of bond strength of each group were verified for homogeneity with the Shapiro-Wilk method. The Student T test was used to determine whether significant differences were present in the bond strengths between the 2 groups. The Mann-Whitney U test was used to evaluate differences in the ARI scores among groups. All statistical analyses were performed with the software Prism 5.0 (GraphPad Software, San Diego, California, USA) at a 5% level of significance.

Results

Both groups had normal distributions according with the Shapiro-Wilk test [Group I (P = .7915) and Group II (P = .2539)]. The descriptive statistics comparing the shear strength of the two groups are shown in table 1. The Student’s t-test showed significant differences (P < .0001) between the groups evaluated. The NV Hybrid group had a mean shear bond strength of 10.24 + 4.66 MPa, whereas the group with conventional bracket had a mean of 4.85 + 2.46 MPa.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
<th>t-Test*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>20</td>
<td>4.85</td>
<td>2.46</td>
<td>0.71 - 10.11</td>
<td>A</td>
</tr>
<tr>
<td>NV Hybrid</td>
<td>20</td>
<td>10.24</td>
<td>4.66</td>
<td>0.19 - 18.69</td>
<td>B</td>
</tr>
</tbody>
</table>

*P < .0001. Different letters indicate statistically significant difference.

Table 1: Results of student’s t-test comparing shear bond strengths (MPa) of groups.

The ARI scores for the two groups tested are listed in table 2. The results of Mann-Whitney U comparisons for the ARI indicated that there was a significant difference (P = .00032) between the group test as compared with the control group. With the use of the bracket NV Hybrid, there was a higher frequency of ARI scores of 1, which indicated that less composite remained on the teeth.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>NV Hybrid</td>
<td>20</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

*P=.0032

*ARI indicates adhesive remnant index; 0- No adhesive remaining on tooth; 1- Less than half of enamel bonding site covered with adhesive; 2- More than half of enamel bonding site covered with adhesive; 3- Enamel bonding site covered entirely with adhesive.

Table 2: Frequency Distribution and Results of Mann-Whitney U test* of the ARI# of Experimental Groups.

Discussion

The null hypothesis tested was rejected. The results of the present study indicated that the shear bond strength of NV hybrid brackets was significantly higher when compared with metallic brackets. The use of Orthobond associated with metallic brackets had not produced high bonding values, and these results are consistent with a previous study [9]. However, the mean bond strength obtained with the use of hybrid brackets are higher if compared with polycarbonate brackets [10-12] and compatible with ceramic brackets [13,14].

There is not universally accepted minimum clinical bond strength. However, the bond strength required to withstand normal orthodontic forces is believed to be between 8 and 9 MPa [14]. In most studies, the bond strengths of esthetic brackets were significantly lower than those of metal brackets [11,15-20]. In our study, bracket failure occurred between 4.85 and 10.24 MPa. The results suggest that adequate bond strengths can be achieved with NV Hybrid brackets when bonding is carried out to a dry enamel surface.

Citation: Sabrina Duarte Jobin and Julio Pedra e Cal-Neto. “Shear Bond Strength of Hybrid Orthodontic Brackets”. EC Dental Science 19.2 (2020): 01-05.
The evaluation of the ARI scores indicated significant difference in bond-failure site between the two experimental groups. These results showed that NV Hybrid left less adhesive on the enamel than when metallic brackets were used. This fact can be advantageous for clinicians because bond failure at the bracket-adhesive interface or within the adhesive is more desirable than at adhesive-enamel interface, in order to avoid enamel fracture at time of debonding [21,22].

Laboratory studies have the advantage of being able to control and limit the many variables that affect shear bond strength in the mouth, but bond strength tests have shown wide variation. When comparing debonding forces measured in vivo and in vitro, Pickett found that the bond strengths in vivo were significantly lower than those measured in vitro. Possible reasons suggested could be the length of time the appliance was in the oral environment, exposing the bonded brackets to acid, saliva, and variable patient abuse and masticatory forces, all of which may have contributed to the decreased bond strength [23].

Because of its new properties, NV Hybrid brackets can be considered as an interesting and promising material. However, this was a laboratory study and care should be taken in interpreting the results. To recommend the use of this product in a large scale, more studies are required, particularly in vivo studies and clinical trials [24,25].

Conclusion

- The use of hybrid brackets with a polymeric base has resulted in higher bond strength values if compared to the conventional metallic brackets.
- The amount of adhesive remaining on enamel after debonding was significantly higher when using hybrid brackets if compared to metallic brackets.

Bibliography

Shear Bond Strength of Hybrid Orthodontic Brackets


Volume 19 Issue 2 February 2020
©All rights reserved by Sabrina Duarte Jobin and Julio Pedra e Cal-Neto.