Clinical Management of Maxillary Central Incisor Extraction for Orthodontic Treatment- A Case Report

Jose Jacob*, Balakrishna Shetty2, Vivek Suku Ninan3, Sudeep C Bhagavandas4 and Joseph Johny5

1Assistant Professor, Department of Orthodontics, Sree Anjeneya Institute of Dental Sciences, Calicut, Kerala, India
2Professor, Department of Orthodontics, Coorg Institute of Dental Sciences, Karnataka, India
3Assistant Professor, Department of Orthodontics, Pushpagiri College of Dental Sciences, Thiruvalla, Kerala, India
4Assistant Professor, Department of Public Health Dentistry, Sree Anjeneya Institute of Dental Sciences, Calicut, Kerala, India
5Assistant Professor, Department of Oral Medicine and Radiology, Sree Anjeneya Institute of Dental Sciences, Calicut, Kerala, India

*Corresponding Author: Jose Jacob, Assistant Professor, Department of Orthodontics, Sree Anjeneya Institute of Dental Sciences, Calicut, Kerala, India.

Received: July 26, 2019; Published: August 27, 2019

Abstract

Orthodontic treatment in patients with trauma to the anterior teeth is challenging particularly when it involves the maxillary incisor teeth. Careful treatment planning and mechanics is needed to ensure good treatment results. This case report is on a 12-year-old boy who suffered multiple trauma to his upper central incisors, with generalized crowding in the upper and lower arch. Extractions of both his central incisors were performed and lateral incisors were converted to central incisors and canines to laterals. This case report outlines the various esthetics and biomechanical constrains in the extraction of the central incisors and how to successfully counter them for optimum treatment results.

Keywords: Orthodontics; Aesthetics; Extraction

Introduction

Extraction versus non-extraction in orthodontic patients has been an area of debate since the early 20th century. This still remains as an area of controversy. Though modern orthodontist prefers a non-extraction treatment approach for their patients, extraction is inevitable in certain situations like, Tooth size - arch length discrepancy (severe crowding), Bimaxillary dentoalveolar protrusion, Skeletal disharmony and camouflage treatment etc. The most common teeth extracted for an orthodontic procedure are the premolars. But in certain specific situations like dental caries, trauma, localized periodontitis, dilacerations, we do extract other teeth like the molars or the lower incisors. The maxillary central incisors are the least common tooth to be extracted owing to esthetics during and post orthodontic treatment [1].

The major challenges for extraction of the maxillary central incisors are [2-6]:

1. Size of the central and lateral incisors
2. Gingival margins of the anterior tooth
3. Canine root prominence
4. Aesthetics during the orthodontic procedure

In this case report we discuss the orthodontic treatment procedure done with extraction of two maxillary central incisors and lower premolars.

Case Report

The patient was a twelve-year-old boy with good physical health. He had a symmetric face with a convex soft tissue profile. His chief complaint was the misalignment of his anterior teeth. He had suffered a trauma to his central incisors and was avulsed. Immediately after avulsion the tooth was repositioned and splinting done. Root canal treatment was done on both the incisors and crown was placed on 11. Extra oral examination showed increased vertical skeletal proportions, increased lower facial third and leptoprosopic facial type.

Intraoral examination showed end on molar relations, generalized crowding in the upper and lower arch with increased overjet.

Cephalometric evaluation showed class 2 skeletal pattern with vertical growth pattern with proclined upper and lower anteriors (Figure 1-12).

Figure 1-4: Pretreatment extra oral.

Figure 5-7: Pre-treatment intra oral.
Clinical Management of Maxillary Central Incisor Extraction for Orthodontic Treatment- A Case Report

Figure 8 and 9: Pre-treatment occlusal.

Figure 10 and 11: Pre-treatment Opg and IOPAR of 11, 12.

Figure 12: Pre-treatment lateral cephalogram.

Based on these findings the treatment options were made:

- **Option 1**: Extraction of all 4 premolars followed by retraction of incisors and alignment with corticotomy on the ankylose incisors.
- **Option 2**: Extraction of both central incisors and lower premolars followed by prosthetic correction of the lateral incisors and enameloplasty of the canines.
- **Option 3**: Extraction of both the central incisors and lower premolars followed by a complete prosthetic correction from upper 1st premolar to premolar.
- **Option 4**: Autotransplantation of the premolars to the maxillary incisors extraction sockets [7,8].

All the treatment options were explained to the patient and based on surgical procedure involved and the patient preference it was decided for extraction of both the central incisors and prosthetic correction of lateral incisors.

### Treatment progress

The first stage involved the removal of both the upper central incisors and lower second premolars. Care was taken to preserve the cortical bone during extraction particularly in the anterior region. Immediately after extractions the case was bonded with 022” MBT brackets and molars were banded with straight wire tubes. Care was taken during bonding to ensure the best esthetic outcome due to the minimal prosthetic correction intended after the fixed treatment phase. The central brackets were placed on the laterals and the lateral brackets were placed on the canines to ensure the correct torque expression and positioning was intended to intrude the lateral incisors and extrude the canine.

Ryder pontic was placed on the central incisor extraction site and was gradually trimmed to provide space for alignment (Figure 13). Conventional treatment methods were followed. Initial leveling and alignment was done with 014” Ni-Ti wire, followed by 016” Ni-Ti wire and Rectangular Ni-Ti wires (17 X 25) were introduced for early torque expression. The leveling and alignment stage was followed by 19 X 25 stainless steel wire for space closure and class 2 elastics were worn for a short period of time to correct the molar relation. The space for the lateral build up was maintained by a metal sleeve introduced between the central incisors and a stop introduced in front of the molars (Figure 14). 21 X 25 stainless steel wire was introduced just before the finishing stages for adequate torque expression.
Figure 13: Initial wire (014 niti) with ryder pontic.

Figure 14: Class 2 elastics with molar stops.
By the completion of orthodontic treatment, prosthodontic alteration was carried out. The maxillary lateral incisors were built up with Z100-3M resin composite to resemble central incisors. Enameloplasty was carried out on the canines to resemble lateral incisors. The palatal cusps of the first bicuspids were grinded as well to make these teeth ready to serve as canines (Figure 15-26).

**Figure 15-17:** Post treatment intraoral.

**Figure 18 and 19:** Post treatment occlusal.

Figure 20-24: Post treatment extraoral.

Figure 25: Post treatment lateral cephalogram.

<table>
<thead>
<tr>
<th>Normal MAXILLA</th>
<th>SNA 82 DEGREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETROGNATHIC MANDIBLE</td>
<td>SNB 79 DEGREE</td>
</tr>
<tr>
<td>CL II SK RELATION</td>
<td>BY ANB OF 3 DEGREE</td>
</tr>
<tr>
<td>VERTICAL GROWTH PATTERN</td>
<td>MAND PLANE OF 43 DEGREE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normally positioned upper and lower Incisors</th>
<th>Inter incisal angle 129 degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally positioned upper incisors</td>
<td>UI - SNP=98 degree</td>
</tr>
<tr>
<td>Normally positioned lower incisors</td>
<td>LI-MP=90 degree</td>
</tr>
<tr>
<td>Nasolabial Angle</td>
<td>Normal (102 degree)</td>
</tr>
</tbody>
</table>

Ginvioplasty was carried out in the maxillary anterior region to improve the esthetics. Inspite of the extrusion of the canines the gingival margin was slightly highly placed but patient was satisfied with the results and was not willing for any further treatment to improve the esthetics. The patient was put on permanent retention at the end of active treatment. Follow up appointment were made every 6 months and the occlusion remained stable with minimal relapse even on 2 year follow-up (Figure 27-34).
The extraction of anterior teeth for orthodontic purpose is rare and challenging, but certain situations demand such a procedure. Careful treatment planning and mechanics can restore esthetics and function in such cases. Care should be taken right from case selection to retention and is indicated in such case were the roots are ankylosed due to a trauma as in above or there is a developmental anomaly and extraction for orthodontic procedure is advocated.

During the procedure care should be taken parallel the roots of the lateral incisors, match the gingival contours for esthetic post treatment appearance, rotate the first premolar mesiopalatally and leave space for the lateral incisor build-up.

Functional occlusion should also be taken into consideration and non working side interferences during mandibular extrusions should also be eliminated to achieve long term stability and good TMJ function. The prevalence of nonworking side interferences and overall temporomandibular joint health is almost identical in subjects treated with orthodontic space closure or prosthetic replacement with absent lateral incisors [10]. Therefore, central incisor substitution is also unlikely to have a prolonged influence on temporomandibular integrity [11]. The gingival margin is of prime concern in such central incisor extraction cases. The lateral incisor should be intruded to push the gingival margin more apically to mimic a central incisor and the canine should be extruded to pull the gingival margin more coronally. In this case initial bracket positioning was done to achieve the same. The torque expression is also of prime importance. The canine should be given a positive root torque to minimize the canine eminence, this can be either done by using a positive torque canine bracket or replacing a lateral incisor brackets. Individual root torquing auxiliaries can also be incorporated for additional torquing, the first premolars are given a mesiopalatal rotation to maintain the golden proportions. During space closure the force levels should be minimal to prevent the tipping of the lateral incisors. The roots should be kept parallel as possible to prevent unwanted space opening. A central incisor bracket on the lateral incisor would help in achieving this by providing good tip and torque control. Second order bends can also be used in the finishing stages to achieve this. Autotrasplantation is also an option in cases involving avulsion of the teeth with arch length discrepancy.

Discussion

The extraction of anterior teeth for orthodontic purpose is rare and challenging, but certain situations demand such a procedure. Careful treatment planning and mechanics can restore esthetics and function in such cases. Care should be taken right from case selection to retention and is indicated in such case were the roots are ankylosed due to a trauma as in above or there is a developmental anomaly and extraction for orthodontic procedure is advocated.

During the procedure care should be taken parallel the roots of the lateral incisors, match the gingival contours for esthetic post treatment appearance, rotate the first premolar mesiopalatally and leave space for the lateral incisor build-up.

Functional occlusion should also be taken into consideration and non working side interferences during mandibular extrusions should also be eliminated to achieve long term stability and good TMJ function. The prevalence of nonworking side interferences and overall temporomandibular joint health is almost identical in subjects treated with orthodontic space closure or prosthetic replacement with absent lateral incisors [10]. Therefore, central incisor substitution is also unlikely to have a prolonged influence on temporomandibular integrity [11]. The gingival margin is of prime concern in such central incisor extraction cases. The lateral incisor should be intruded to push the gingival margin more apically to mimic a central incisor and the canine should be extruded to pull the gingival margin more coronally. In this case initial bracket positioning was done to achieve the same. The torque expression is also of prime importance. The canine should be given a positive root torque to minimize the canine eminence, this can be either done by using a positive torque canine bracket or replacing a lateral incisor brackets. Individual root torquing auxiliaries can also be incorporated for additional torquing, the first premolars are given a mesiopalatal rotation to maintain the golden proportions. During space closure the force levels should be minimal to prevent the tipping of the lateral incisors. The roots should be kept parallel as possible to prevent unwanted space opening. A central incisor bracket on the lateral incisor would help in achieving this by providing good tip and torque control. Second order bends can also be used in the finishing stages to achieve this. Autotrasplantation is also an option in cases involving avulsion of the teeth with arch length discrepancy.
Successful auto transplantation for such cases has being effectively carried out,7 but in this case the option was discarded owing to the tooth position and the surgical technique sensitivity involved.

In this case to correct the molar relation, second premolars were extracted, additional mesial tip was incorporated in the lower canine and short term class 2 elastics were given with molar stops and metal sleeve to maintain the upper arch length. But owing to the growth status of the patient and mild lower molar rotations we were not able to continue the class 2 elastics for a longer time. Age of the patient is definitely a criterion for case selection, older patients refrain from such anterior extractions considering the edentulous period involved, in this case we have managed it with a Ryder pontic attached to the adjacent tooth with composite.

At the end of treatment an acceptable esthetics and functional occlusion was achieved. It would have been better if the canine intrusion was carried to a few millimeters to make the gingival contour more apically. Option of extending the treatment phase for complete molar correction and settling was discussed with the patient, but due to his time constrains we were not able to do so. But we feel that we were highly successful in improving the patient esthetics, giving the patient a much-needed psychological boost, by following the most conservative treatment approach possible A 2 year follow-up recall of the patient showed a well settled occlusion in molar and premolar regions. Cephalometric analysis showed a significant decrease in the ANB angle probably due to the natural repositioning of the mandible forward due to the removal of anterior teeth hindrances by alignment of teeth.

**Conclusion**

Many factors attribute to the decision on which tooth to be extracted during an orthodontic treatment. But certain situations like trauma or developmental disturbances force a clinician to extract teeth that are not commonly indicated for treatment. Treatment planning and proper biomechanics can help us overcome this hurdle and restore esthetics and function.

**Bibliography**