Irrigating Solutions in Pediatric Dentistry: A Big Deal in Little Teeth

Nilotpol Kashyap¹*, Manisha Upadhyay², Jyoti Sharma², S J Das³ and Tulsi Katlam⁴
¹Professor and HOD, Department of Pedodontics and Preventive Dentistry, Ucms, College of Dental Surgery, Bhairahawa, Nepal
²Senior Lecturer, Department of Pedodontics and Preventive Dentistry, Ucms, College Of Dental Surgery, Bhairahawa, Nepal
³Professor and HOD, Department of Periodontics, RDC, Guwahati, Assam, India
⁴PG Student, Rungta College of Dental Sciences, Bhilai, India
*Corresponding Author: Nilotpol Kashyap, Professor and HOD, Department of Pedodontics and Preventive Dentistry, Ucms, College of Dental Surgery, Bhairahawa, Nepal.
Received: June 11, 2019; Published: June 27, 2019

Abstract
Although preventive measures have reduced caries, premature loss of primary teeth due to pulpal involvement remains a very common problem. The premature loss of primary molars may result in mesial drift of the permanent teeth thus causing malocclusion. Although space maintainers can be used to preserve arch space, retention of pulpally involved primary teeth is more preferable if they can be restored and free of pulpal pathology.

Because of high failure rates, pulp capping is not recommended for carious exposures in primary teeth other than mechanical exposure in a healthy tooth. All pulp exposures in primary teeth should be treated with direct pulp capping, pulpotomy, pulpectomy and extractions. Pulpectomy is done in case of teeth which are irreversibly inflamed and with necrotic radicular canals.

Keywords: Pediatric Dentistry; Pulpotomy; Pulpectomy; Pulp Capping

Introduction
Primary teeth are as valuable as permanent teeth because they act like natural space maintainers in children. It is necessary to save primary teeth because they serve other important functions like mastication, speech, aesthetics and also helps in the development of jaws. Pediatric endodontics serves as an important role in saving primary teeth which are symptomatic. In cases of irreversible pulps or in cases of trauma where the pulp is exposed, pulpectomy plays an important role in preserving the primary teeth. The difference between pulpectomy in primary teeth and root canal treatment in permanent teeth lies in the preparation of the teeth. Before beginning root canal therapy, the dentist should understand the differences between the root canal morphology of the permanent and primary teeth [1].

The root canals of primary anterior teeth are relatively simple having fewer irregularities and are relatively easy to treat endodontically whereas root canal systems of primary molars frequently contains many ramifications and deltas between canals making thorough debridement quite difficult.

Root canal morphology of primary molars [2]:
Generally there is only one root canal present in each of the roots of the primary molar.

The root canals of primary teeth begin to resorb as soon as root length is completed. This resorption causes the position of the apical foramen to change continually.

Secondary dentin is deposited within the root canal system. This deposition produces variations in the number and size of the root canal, as well as many small connecting branches between the facial and lingual aspect of the canals.

Continued deposition of dentin within the root divides it into separate canals.

In addition to this, accessory canals, lateral canals and apical ramifications of the pulp can be found in 10% to 20% of primary molars.

According to Goerig, maxillary primary molars may have two to five canals, with the palatal root usually rounder and longer than the two buccal roots. The mesiobuccal root may have two canals in 75% of the primary maxillary first molars and in 85% to 90% in the primary maxillary second molars. Also, fusion between the distobuccal and palatal root occurs in one-third of primary maxillary first molars and occasionally in the primary maxillary molars.

Rationale for using irrigating solutions [3]

The success of root canal therapy in primary teeth is determined by thorough removal of debris and necrotic tissue. Due to the presence of deltas and fins in the root canal system of the primary teeth, complete elimination of bacteria by cleaning with endodontic instruments is impossible; this is where adjunctive use of root canal irrigants along with mechanical instrumentation comes in. The currently used irrigants can be grouped into anti-microbial and decalcifying agents or their combinations. Two or more irrigants in a specific sequence can contribute to a successful treatment outcome as no single irrigating solution is regarded optimal.

The ideal requirements of an irrigating solution are [3]:

- It should possess broad antimicrobial spectrum.
- It should possess high efficacy against anaerobic and facultative micro-organisms present in the bio-films.
- It should completely dissolve necrotic pulp tissue.
- It should be able to avoid formation or dissolve smear layer formed during instrumentation.
- It should be non-toxic to vital tissue and non-caustic to periapical and periodontal tissues.

Commonly used irrigating solutions in pulpectomy are

Sodium hypochlorite (NaOCl) [4]

NaOCl is the most commonly used solution used in dentistry. NaOCl gives rise to sodium and hypochlorite ions when combined with water, thereby establishing equilibrium with hypochlorous acid which is responsible for the antibacterial activity. It also has the ability to dissolve organic components such as pulpal remnants and collagen. NaOCl cannot remove the smear layer produced during instrumentation. The concentration of NaOCl should be 2.5%.

The disadvantages of NaOCl

- It has an unpleasant odour and taste.
- It does not consistently disinfect the root canal system.
- It is toxic when extruded in to the peri-radicular tissues.
- It can damage permanent tooth follicles.
- It reacts with other irrigating solutions like chlorhexidine.
Irrigating Solutions in Pediatric Dentistry: A Big Deal in Little Teeth

Chlorhexidine [5]

Chlorhexidine reacts with negatively charged groups on the surface of bacterial cells, thereby damaging and reducing intracanal bacteria. Chlorhexidine generally suggested to be used in pulpectomy of necrotic primary teeth at 2% concentration.

Disadvantages of Chlorhexidine

Inflammatory responses were seen when chlorhexidine is accidently injected beyond the root apex.

It is incapable dissolving necrotic tissue.

It has limited action on gram negative organisms.

EDTA and citric acid [6]

EDTA is commonly used as 17% neutralized solution while citric acid is available in various concentrations ranging from 1% to 50%. EDTA and citric acid are available in gels and liquids. They both effectively dissolve the inorganic components and smear layer with little or no effect on organic tissue. Studies have shown the irrigation with 6% citric acid or 15 to 30 seconds is quite effective in removing all the components of the smear layer of the primary teeth.

Disadvantages EDTA and citric acid

Both are incapable of destroying bacteria.

Mixture of doxycycline and citric acid with a detergent (MTAD) [7]

This mixture was introduced by Torabinejad, et al. this mixture contains 3% doxycycline, 4.25% of citric acid and a detergent Tween 80 (0.5% Polysorbate detergent). It is used as an alternative to EDTA to remove smear layer effectively and to disinfect the root canals of primary teeth when used as a final rinse. The mixture also possesses bacteriostatic activity. It is effective as an intracanal irrigant only when used in full dosage i.e. 5ml per root canal.

Tetraclean [8]

Tertaclean is a mixture of doxycycline hyclate (at a lower concentration than in MTAD), an acid and a detergent. It is recommended to be used as a final rinse after root canal preparation. It contains doxycycline (50 mg per 5 ml) with polypropylene glycol (a surfactant) citric acid and cetrimide. It is capable of eliminating all bacteria and smear layer from the root canal system when used as a final rinse.

Hydrogen peroxide (H₂O₂) [9]

Hydrogen peroxide was used for many years as an endodontic irrigant. H₂O₂ is a widely used biocide for disinfection and sterilization. Hydrogen peroxide is a clear colorless liquid that is used in a variety of concentrations in dentistry ranging from 1% to 30%. H₂O₂ is active against viruses, bacteria, yeast and even bacterial spores. It has greater activity against gram positive bacteria. H₂O₂ produces hydroxyl free radicals which attacks cell components such as proteins in bacteria.

Disadvantages of hydrogen peroxide (H₂O₂)

At high concentration hydrogen peroxide is not well tolerated in the body and might play a role in the development of cervical resorption.

Maleic acid [10]

It is a mild organic acid used as an acid conditioner in adhesive dentistry. Ballal, et al. reported that final irrigation with 7% maleic acid for 1 min. was more efficient than 17% EDTA in removing smear layer.

Irrigating Solutions in Pediatric Dentistry: A Big Deal in Little Teeth

Carisolv [11]

Carisolv contains 0.5% sodium hypochlorite along with amino acids. The hypothesis was that this agent can also be effective in removal of smear layer from root canal system when used as an irrigant studies have shown that carisolv was ineffective in removing smear layer.

Smear clear [12]

Smear clear contains 17% EDTA along with cetrimide and additional proprietary surfactants. These components aid in the removal of inorganic matter left in the canal during instrumentation. According to different studies smear clear has been found to be effective against gram positive and gram negative organisms due to the presence of cetrimide which is a quaternary ammonium compound and a cationic detergent.

Electrochemically activated solutions [13]

A mixture of tap water in low concentrated salt solution forms the electrochemically activated solutions. This results in the synthesis of anolyte and catholyte. The oxidative properties of anolyte exhibit antimicrobial activity against bacteria, viruses, fungus and protozoa. The solution is also known as superoxidized water or oxidative potential water. Due to various advantages such as removal of debris and smear layer as well as having non-toxic properties, it can be used as potential root canal irrigants.

Ozonated water [14]

Ozone is a chemical compound consisting of 3 oxygen atoms. Ozone is capable of oxidizing any biological entity due to its bacterial properties even at low concentrations. Studies have shown that when ozonized water was used with sonification as a irrigant, the bacterial ability of ozonized water and 2.5% sodium hypochlorite was found to be comparable.

Herbal irrigants

Triphala and green tea polyphenols [15]:

Triphala is an ayurvedic formulation consisting of dried powdered fruits of 3 medicinal plants.

Terminalia bellerica
Terminalia chebula
Embllica officinalis

Triphala consist of fruits that are rich in citric acid, which may aid in the removal of smear layer.

The polyphenols found in green tea are known as flavanols. Theses favanols have significant anti-oxidant, anti-cariogenic, anti-inflammatory, thermogenic, probiotic and antimicrobial properties. Studies have shown that triphala and green tea when used as an irrigant had antimicrobial activity.

Morinda citrifolia (Noni) [16]

Morinda citrifolia also known as noni or Indian mulberry as a broad range of therapeutic effects such as antibacterial, anti-inflammatory, analgesic, anti-helminthic , antiviral and immunity enhancing property.

Miswak [17]

Miswak is derived from Salvadora persica which is mainly used as a chewing stick.

Wolinsky and Sote, by isolation of the active ingredient of S. persica found at the limonoid had a great antimicrobial activity against gram positive and gram negative bacteria. In vivo studies have found that 10% to 20% extract of miswak was an effective antifungal and antibacterial agent when used as an irrigant in the endodontic treatment of teeth with necrotic pulp against C. albicans and E fecalis.

German Chamomile and Tea tree oil [18]

German chamomile is a medicinal plant known for the anti-inflammatory, antimicrobial, antisporic and sedative properties. An SEM study done with German Chamomile extract and tea tree oil found that the smear layer removing efficacy of German chamomile and tea tree oil to be superior to NaOCl and inferior to EDTA.

Reaction of sodium hypochlorite with EDTA [19]

EDTA is used at concentration of 15% - 17% which has a neutral or slightly alkaline pH. At this pH sodium hypochlorite reacts with EDTA which results in a decrease of free available fluorine.

\[4\text{HOCI} = 2\text{Cl}_2 + \text{O}_2 + \text{H}_2\text{O} \]

Clinical implication

Mixtures of EDTA and NaOCl which have a low pH results in the loss of free available chlorine which significantly reduces the ability of NaOCl to dissolve the organic tissue.

Reaction of sodium hypochlorite with chlorhexidine

Chlorhexidine is a cationic bisguanide with broad spectrum antimicrobial properties against gram positive bacteria. When NaOCl solution is mixed with chlorhexidine an orange brown precipitate is formed. This precipitation product has not been clearly identified but is similar to chloroguanide which is a toxin.

Clinical implications

The coloured precipitate can stain dentin.
The precipitate can occlude dentinal tubules and canal orifice, thus lowering the efficacy of endodontic irrigant.
The toxin chloroguanide can harm the cells of the periodontal ligament.

Sequence of irrigating solutions

1. **NaOCl**
 - During instrumentation canal should be irrigated copiously with NaOCl to dissolve pulp remnants.

2. **Normal saline**
 - Intermediate irrigating solutions like normal saline (An intermediate irrigating solution is used to prevent interaction between irrigating solution like NaOCl and EDTA.

3. **EDTA**
 - EDTA irrigating solution is used to remove the smear layer.

4. **Normal saline**

5. **MTAD or Chlorhexidine**
 - The canals are dried and irrigated with a final irrigating solution which is usually MTAD or Chlorhexidine to disinfect the canals.

Irrigating Solutions in Pediatric Dentistry: A Big Deal in Little Teeth

Conclusion

For the successful preparation of the canals in primary teeth irrigation serves as a valuable adjunct. It is specially true in cases of primary teeth with tortuous canals. Irritants helps in removing the smear layer dissolving necrotic debris and removing bacterias from the root canal system. In pulpectomy procedures in primary teeth the main goal is to make the root canal system free of bacteria and not shaping of the canals as is done in cases of permanent teeth. Researches is still going on to produce an irrigating solution which has all the ideal properties.

Bibliography

Citation: Nilotpol Kashyap., et al. "Irrigating Solutions in Pediatric Dentistry: A Big Deal in Little Teeth". EC Dental Science 18.7 (2019): 1620-1626.

Volume 18 Issue 7 July 2019
©All rights reserved by Nilotpol Kashyap., et al.