The Effects of pH Changes on the Microhardness of Three Fluoride Releasing Restorative Materials: An In Vitro Study

Neslihan Çökük¹, Gülter Devrim Kaki²*, Duygu Recen³, Gûlner Işıl Türk Zamahay⁴, Emine Kara⁵

¹Department of Prosthetic Dentistry, Special Dentist, Ankara, Turkey
²Department of Endodontics, Uşak University, Uşak, Turkey
³Department of Restorative Dentistry, Uşak University, Uşak, Turkey
⁴Department of Restorative Dentistry, Küçükçekmece Oral and Dental Health Hospital, İstanbul, Turkey
⁵Department of Restorative Dentistry, Bursa Oral and Dental Health Hospital, Bursa, Turkey

*Corresponding Author: Gülter Devrim Kaki, Department of Endodontics, Uşak University, Uşak, Turkey.

Received: July 25, 2018; Published: August 29, 2018

Abstract

Objective: The aim of this study was to compare the microhardness of three different fluoride releasing materials after the pH changes of the oral environment in order to provide long term success.

Materials and Methods: Three restorative materials were used for the sample preparation: Chemfil Rock glass ionomer, Glasiosite compomer and Beautifil II giomer. Twelve sample were prepared for each of the three groups (n = 12), and the specimens standardized to 12 mm in diameter and 2 mm in depth by using a sampler. A vickers microhardness test was used to determine the initial microhardness values of the samples. All the groups were submitted to pH cycling based on the Stephan Curve and the final microhardness tests were completed and recorded. Statistical analyses were made by SPSS 20.0 software.

Results: The initial and post application microhardness values of all the materials used showed a statistically significant decrease after the pH cycling procedure. Beautifil II had the highest decrease in the percentage among the groups.

Conclusion: The results showed that pH effects on the microhardness of restorative materials are restorative material dependent. In addition, the pH cycling solutions changed the microhardness of all the materials tested.

Keywords: Glass Ionomer; Compomer; Giomer; Microhardness; Stephan Curve

Abbreviations

CGIS: Conventional Glass Ionomer Cement; HEMA: Hydroxyethylmethacrylate

Introduction

The oral cavity is a complex, dynamic environment that produces challenges for clinicians with respect to moisture, temperature, and acid levels. An ideal restorative material should be biocompatible, stable over long term, nonreactive to pH changes, compatible with other materials, esthetically pleasing [1-4]. The main reason for restorative replacement is inadequate tooth structure sealing, which ends in secondary caries [5]. Fluoride reservoir materials can prevent secondary caries by releasing fluoride into the saliva, plaque, and teeth [2].

The Effects of pH Changes on the Microhardness of Three Fluoride Releasing Restorative Materials: An In Vitro Study

Conventional glass ionomer cement (CGIS) is a biocompatible fluoride releasing material that can be placed in cavities without bonding; however, it exhibits low physical strength, water sensibility, and aesthetic limitations [6-8]. To improve the physical and mechanical properties of CGIS, compomers have been developed that resemble composite resin, but the fluoride is released through hybrid materials [2,3]. When compared to CGIS, compomers are less biocompatible because of their hydroxyethylmethacrylate (HEMA) content [8,9]. Giomers have recently been introduced as an alternative for direct restorative procedures. They are fluoride releasing reservoirs that are aesthetically pleasing, polishable and biocompatible [10-12]. Although there are many options for restorative procedures, the perfect material has yet to be found.

Because of the lack of literature on this subject, the objective of this research was to determine the effects of Stefan curve pH changes on the microhardness of these three fluoride releasing restorative materials. The aim of this study was to compare the microhardness of three different fluoride releasing materials to the pH changes of the oral environment in order to provide long term success.

Materials and Methods

Three restorative materials were used for the preparation of the samples: Chemfil Rock glass ionomer (Dentsply, Konstnz, Germany), Glasiosite compomer (VOCO, Cuxhaven, Germany), and Beautifil II giomer (Shofu, Kyoto, Japan). Twelve samples were prepared for each of the three groups (n = 12). The specimens were standardized to 12 mm in diameter and 2 mm in depth by using a sampler (Smile Line, Saint-Imier, Switzerland), which allows practitioners to determine the thickness of samples. Shade A2 was chosen for each group (Figure 1).

In group 1, the Chemfil Rock was prepared by using an amalgamator (400/M; Linea Tac, Montegrosso d’asti AT, Italy) and the materials were inserted horizontally into the sampler. The samples were restrained using transparent polyethylene terephthalate (Mylar) strips with a glass slide cover. In group 1, the surface coating was not applied, but the samples were held for 20 minutes before removing the glass.

The polymerization in group 2 and 3 was performed with an Elipar FreeLight 2 curing unit (3M ESPE, St. Paul, MN, USA) for 20 seconds according to the manufacturer's instructions (Figure 2). After removing the samples from sampler, we waited 3 minutes for group 1, but group 2 and 3 were light cured again immediately.

The specimens were finished and polished with 12.7 mm aluminum oxide-coated discs (Sof-Lex, 3M ESPE) in decreasing grit size order by one single practitioner. Every sample was moistened with water prior to the use of each disc. Finally, the samples were numbered and stored in deionized water for 24 hours at 37°C in an incubator.

Microhardness measurements

A vickers diamond intender (HMG-G, Shimadzu, Kyoto, Japan) was used to determine the initial microhardness values of the samples (Figure 3). Five indentations were made in each sample, 2 mm apart and the average was calculated automatically by the device. Then, the samples were immersed in 10 different 5 ml experimental artificial saliva solutions were as follows: 0.7 mmol/l \(\text{CaCl}_2 \cdot 2\text{H}_2\text{O} \), 0.2 mmol/l \(\text{MgCl}_2 \), 4.0 mmol/l \(\text{KH}_2\text{PO}_4 \), 30.0 mmol/l \(\text{KCl} \) and 20.0 mmol/l HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] buffer [12].

The samples were placed in separate glasses with the direction of the indentations toward the bottom. Each time the solution was changed, all the samples were washed with deionized water. All the groups were submitted to pH cycling and then, the final microhardness tests were completed and recorded.

<table>
<thead>
<tr>
<th>Solution</th>
<th>pH</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5.8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4.9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>5.2</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>5.4</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>5.6</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>5.9</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>6.2</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 1: The pH cycling of the Stephan curve.

Statistical analyses

Statistical analysis was performed using the SPSS 20.0 software. To analyse normality Kolmogrov-Smirnory test was used. One-way ANOVA and Post-Hoc Tukey tests were used to analyse the differences among groups and the differences in the groups ($p < 0.05$).

Results and Discussion

The results of the microhardness tests of materials are displayed in figure 4 and they showed statistically significant differences ($p < 0.05$). The initial and post application microhardness values of all the materials used showed statistically significant decreases after the pH cycling procedure. However, Beautifil II exhibited the highest decrease in the percentage among the groups ($p > 0.05$).

Figure 4: The means and standard errors of the study results.

The Effects of pH Changes on the Microhardness of Three Fluoride Releasing Restorative Materials: An In Vitro Study

For patients with a high caries risk level, the quality and the quantity of the ions released from restorative materials are important, as well as the physical and mechanical properties [13]. When compared with the other dental materials, the fluoride releasing materials have demonstrated low plaque accumulation [14]. Even though the fluoride releasing dental materials are the proper choice when preventing caries [14], their low mechanical properties are still a big problem [15]. Moreover, secondary caries under restorative materials have not yet been resolved.

Cariogenic microorganisms, acidic foods, dietary carbohydrates, salivary ionic strength, bacteria, and enzymatic attacks are responsible for pH changes in the oral cavity [2,13,16,17]. Fluoride release and surface properties of restorative materials (Re tac-Fil Plus, Vitremer, Fuji II LC, Freedom and Fluorofil). Thus, as long as sucrose is present in the plaque, acid forms, which results in tooth decay. In 1940, Stefan showed that the pH of the anterior teeth was reduced from 6.5 to 5 within 2-4 minutes after rinsing the mouth with a glucose solution. This was done by placing the electrodes in a plate on a flat surface and slowly reaching the initial pH value after 40 minutes. This showed that microorganisms can form acid from carbohydrates very quickly [17]. Because of this, we choose to use the Stefan curve to stimulate the pH changes.

It has been suggested that due to low pH levels or salivary enzyme actions in artificial saliva, the biodegradation of materials may increase [3,18] and the fluoride level may rise [18]. Therefore, the release of fluoride from dental materials is affected by the pH of medium [13]. Due to the chemically active oral environment, the biodegradation of materials is unavoidable. Thus, clinicians should be aware of the importance of selecting the appropriate restorative material for the patient based on their risk factors [2].

Chemical degradation can occur in many ways, through oxidative, thermolytic, photoolytic, radiolytic, solvolytic, or hydrolytic degradation, the last of which is most studied by clinicians. The biodegradation of materials results in decreased microhardness [4]. Similar to previous studies [4,19], the results of our study showed that the pH cycling procedure significantly reduced the microhardness of each material tested.

Even if the researching mechanism has not been fully understood, it is believed that the hydrogel layer around the glass filler particles following the reactions between the glass and polyacid components is responsible for the fluoride release. The pH changes of the prereaction between the flora, aluminum silicate glass, and polyacid to form the CGIS matrix structure before blending with the resin [11,14]. Therefore, we suppose that the initial fluoride release of the giomer material played a major role in decreasing the microhardness value. In addition, the microhardness of the compomer material does not decrease as much as the giomer. One possible reason for this variation may be that the hydrogel layer of the glass filler in the giomer is more prevalent than in the compomer.

The microhardness of the CGIS material depends on the particle size, powder to liquid ratio, temperature, and humidity. To maintain standardization, one clinician prepared all of the samples on the same day by using an amalgamator based on the reaction time. Therefore the powder to liquid ratio changes, hand mixing differences, and environmental variations were avoided [7,19].

To overcome the early water exposure to the CGIS and increase the physical strength, surface coating materials can be used. In addition, the loss of translucency and dimensional changes can be prevented. Varnishes, petroleum jelly, cocoa butter, and light cured resin have been recommended for coating; however, the application of resin takes time, increases costs, and reduces fluoride release [6]. Shintome, et al. found that there was no significant difference between the material’s microhardness values with or without surface coating [20]. However, one study reported that light cured self adhesive coating exhibited increased mechanical strength when compared to the non-surface coated samples when the compressive tests were performed [21]. In our study, the surface coating was not applied, but the samples were held for 20 minutes with transparent polyethylene terephthalate strips and a glass slide cover as a coating effect.

Many investigators have found that the Sof-Lex disc performance is superior to that of other polishing materials [22]. Therefore, we choose Sof-Lex disc as the polishing material for our study.

The Effects of pH Changes on the Microhardness of Three Fluoride Releasing Restorative Materials: An In Vitro Study

This study points out importance of choosing the right restorative material based on the biodegradation of fluoride releasing restorative materials from the pH changes in an artificial oral cavity. Overall, it is clinically important to understand the correlation between the restorative materials and the pH variations in the oral cavity to maintain long term clinical success.

Conclusion

The effects of pH on the microhardness of restorative materials are material dependent. In this study, the pH cycling solutions changed the microhardness of all the materials tested. This change affected the beautiful II giomer material the most, but did not reduce the microhardness of the CGIS and compomer very much. Further clinical investigations are needed to clarify the biodegradation of CGIS in oral pH changes.

Acknowledgements

This study was supported by Van Yüzüncü Yıl University Scientific Projects Department.

Conflict of Interest

Nil.

Bibliography

Citation: Gülter Devrim Kaki., et al."The Effects of pH Changes on the Microhardness of Three Fluoride Releasing Restorative Materials: An In Vitro Study". EC Dental Science 17.9 (2018): 1645-1651.
The Effects of pH Changes on the Microhardness of Three Fluoride Releasing Restorative Materials: An In Vitro Study

Volume 17 Issue 9 September 2018
©All rights reserved by Gülter Devrim Kaki, et al.