Multi, Inter and Trans-Disciplinary Context of Science

Zoran T Popovski1*, Azis Pollozhani2, Zimere Saiti Musliji2 and Marija Terzic1

1Faculty of Agriculture and Food Sciences, Sv Cyril and Methodius University, Skopje, North Macedonia
2Mother Teresa University, Skopje, North Macedonia

*Corresponding Author: Zoran T Popovski, Faculty of Agriculture and Food Sciences, Sv Cyril and Methodius University, Skopje, North Macedonia.

Received: February 25, 2020; Published: March 14, 2020

Introduction

In reality, there is no scientific discipline that can be developed as an isolated island without connections and cooperation with other disciplines. That’s why, bringing together experts from different disciplines is an appropriate way to find solutions to today’s global challenges. Based on the number of multidisciplinary scientific events taking place around the world, it seems that bringing scientists with a variety of backgrounds together is a crucial part of fixing the world’s problems.

Debate about the discipline dimension in research and technology is always present in the scientific community. There are lot of attempts to define the differences, advantages and disadvantages between multi, inter and trans-disciplinarity. Multidisciplinarity could be defined as an approach to a research topic from different disciplines but staying within their boundaries. Interdisciplinarity analyzes, synthesizes and harmonizes links between disciplines into a coordinated and coherent entity. Transdisciplinarity integrates the natural, social and health sciences in a humanities context, and transcends their traditional boundaries. Going in multi, inter and transdisciplinarity does not mean leaving behind personal skills, but it means “traveling” in new scientific directions using your own specialties. The increasing popularity of mixed scientific disciplines such as mechatronics, bioinformatics, biomedical engineering and biophysical chemistry is evidence of the importance of these phenomena of multi, inter and transdisciplinarity (MITD).

One of the main criteria for financial support of research projects from international programs is MITD. Figure 1 shows the example of MITD in the approved actions from Cooperation in Science and Technology (COST) program in Europe.

Figure 1: Illustration of the interdisciplinary nature of approved COST actions in 2016.
Source: COST Strategic Plan COST 060/17

Multi, Inter and Trans-Disciplinary Context of Science

Example 1

MITD is especially important for the closely related disciplines like biotechnology as an umbrella with agrobiotechnology, food technology, and recombinant DNA technology as disciplines raised by it. Very often, there is an overlap between these branches of biotechnology and it is an argument plus that currently it is very important to provide better connections between complementary disciplines in order to be more efficient in scientific research. For example, dealing with food technology (food processing, food control) means following and using the achievements of agrobio-technology i.e. technologies in food production. On the other hand, recombinant DNA technology is a set of tools that can be used in food production, food processing, food control, but also in human and veterinary medicine for diagnostic or treatment purposes, in pharmaceutical industry for development of new products, in forensic science for identification purposes, in natural history for evolutionary studies, in forestry and fishery for protection and production purposes etc.

Example 2

In a monodisciplinary research group usually there is a lack of creativity. A multidisciplinary group can combine the expertise of different fields and create a diverse team. Such a combination can lead to more creative and higher impact research. For example, the research related to production of new generation of recombinant proteins applied in medicine needs to involve a molecular biologist to clone and express appropriate gene, microbiologist or zoologist or botanist to grow host transformed cell, biochemist to extract and purify the protein, pharmacist to analyze the activity and impact and finally the medical doctor to apply that as a therapeutical tool. All those researchers are working in their field taking in account the joint purpose – production of new protein and it is an example of multidisciplinarity. If just one expertise in this chain of research process is missing, there will be no result. The moment when scientists from different disciplines start to communicate in order to improve the protocols and performances of the novelty, to overcome obstacles during research or to close the circle of production is the moment when interdisciplinarity starts. And finally, when research is going out of the experimental phase and entering the society to face wider challenges, is the moment of transdisciplinarity.

What are the advantages of MITD?

The most exiting part of MITD research is that it opens the possibility to work on projects that involve more than one discipline of science. It means sharing and merging existing personal knowledge and skills with scientists with whom otherwise there would be no chance to interact with. Multidisciplinary research also leads to unusual scientific inventions. A lot of great discoveries have come from robust interactions of researchers from different fields. An independent researcher designing and conducting their own separate experiments probably would never have such great scientific achievements.

Is there any weakness of MITD?

The possible problem of working in a MITD research group is an absence of a “mutual language.” Namely, sometimes it is hard to find a way to start working together on a problem when everyone is approaching it from their own perspective. It can make it difficult to discuss ideas, aims and expectations with team members and to get appropriate feedback. Another challenge of MITD is that there is no substantial criticism and evaluation between the teammates. Very often the ideas and suggestions from each team member could be either accepted without any questions or they could be rejected without constructive criticism. If these challenges are managed well, it can be very rewarding to do MITD science.

Recommendation

Universities, research institutes and companies with research activities should encourage and facilitate MITD research in order to provide interaction between different disciplines where scientists can meet, share ideas and discuss problems. It is non-condition to be more competitive and more efficient in the modern world of science.